![新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第1頁(yè)](http://file4.renrendoc.com/view7/M01/33/2E/wKhkGWa8O_mAOyRHAAFJEc6I7-4691.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第2頁(yè)](http://file4.renrendoc.com/view7/M01/33/2E/wKhkGWa8O_mAOyRHAAFJEc6I7-46912.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第3頁(yè)](http://file4.renrendoc.com/view7/M01/33/2E/wKhkGWa8O_mAOyRHAAFJEc6I7-46913.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第4頁(yè)](http://file4.renrendoc.com/view7/M01/33/2E/wKhkGWa8O_mAOyRHAAFJEc6I7-46914.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第5頁(yè)](http://file4.renrendoc.com/view7/M01/33/2E/wKhkGWa8O_mAOyRHAAFJEc6I7-46915.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題07函數(shù)的性質(zhì)及其應(yīng)用1、(2023年新課標(biāo)全國(guó)Ⅱ卷)若SKIPIF1<0為偶函數(shù),則SKIPIF1<0(
).A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【答案】B【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),則SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則其定義域?yàn)镾KIPIF1<0或SKIPIF1<0,關(guān)于原點(diǎn)對(duì)稱.SKIPIF1<0,故此時(shí)SKIPIF1<0為偶函數(shù).故選:B.2、(2023年新課標(biāo)全國(guó)Ⅰ卷)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】函數(shù)SKIPIF1<0在R上單調(diào)遞增,而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則有函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D3、(2023年全國(guó)乙卷數(shù)學(xué)(文)(理))已知SKIPIF1<0是偶函數(shù),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】D【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),則SKIPIF1<0,又因?yàn)镾KIPIF1<0不恒為0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.4、(2023年新高考天津卷)函數(shù)SKIPIF1<0的圖象如下圖所示,則SKIPIF1<0的解析式可能為(
)
A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由圖知:函數(shù)圖象關(guān)于y軸對(duì)稱,其為偶函數(shù),且SKIPIF1<0,由SKIPIF1<0且定義域?yàn)镽,即B中函數(shù)為奇函數(shù),排除;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0、SKIPIF1<0,即A、C中SKIPIF1<0上函數(shù)值為正,排除;故選:D5、【2022年全國(guó)甲卷】函數(shù)y=3x?A. B.C. D.【答案】A【解析】令f(x)=(3則f(?x)=(3所以f(x)為奇函數(shù),排除BD;又當(dāng)x∈(0,π2)時(shí),3故選:A.6、【2022年全國(guó)乙卷】已知函數(shù)f(x),g(x)的定義域均為R,且f(x)+g(2?x)=5,g(x)?f(x?4)=7.若y=g(x)的圖像關(guān)于直線x=2對(duì)稱,g(2)=4,則k=122A.?21 B.?22 C.?23 D.?24【答案】D【解析】因?yàn)閥=g(x)的圖像關(guān)于直線x=2對(duì)稱,所以g2?x因?yàn)間(x)?f(x?4)=7,所以g(x+2)?f(x?2)=7,即g(x+2)=7+f(x?2),因?yàn)閒(x)+g(2?x)=5,所以f(x)+g(x+2)=5,代入得f(x)+7+f(x?2)=5,即所以f3f4因?yàn)閒(x)+g(2?x)=5,所以f(0)+g(2)=5,即f0=1,所以因?yàn)間(x)?f(x?4)=7,所以g(x+4)?f(x)=7,又因?yàn)閒(x)+g(2?x)=5,聯(lián)立得,g2?x所以y=g(x)的圖像關(guān)于點(diǎn)3,6中心對(duì)稱,因?yàn)楹瘮?shù)g(x)的定義域?yàn)镽,所以g因?yàn)閒(x)+g(x+2)=5,所以f1所以k=122故選:D7、【2022年新高考2卷】已知函數(shù)f(x)的定義域?yàn)镽,且f(x+y)+f(x?y)=f(x)f(y),f(1)=1,則k=122A.?3 B.?2 C.0 D.1【答案】A【解析】因?yàn)閒x+y+fx?y=fxfy,令x=1,y=0可得,2f1=f1f0,所以f0=2,令x=0可得,fy+f?y=2fy,即fy=f因?yàn)閒2=f1?f0=1?2=?1,f3一個(gè)周期內(nèi)的f1所以k=122故選:A.8、(2020年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標(biāo)Ⅱ))設(shè)函數(shù)SKIPIF1<0,則f(x)()A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D【解析】由SKIPIF1<0得SKIPIF1<0定義域?yàn)镾KIPIF1<0,關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,又SKIPIF1<0,SKIPIF1<0為定義域上的奇函數(shù),可排除AC;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,排除B;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,根據(jù)復(fù)合函數(shù)單調(diào)性可知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,D正確.故選:D.9、(2019年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(文科)(新課標(biāo)Ⅲ))設(shè)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞減,則A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】SKIPIF1<0是R的偶函數(shù),SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0在(0,+∞)單調(diào)遞減,∴SKIPIF1<0,SKIPIF1<0,故選C.題組一運(yùn)用函數(shù)的性質(zhì)進(jìn)行圖像的辨析1-1、(2023·安徽蚌埠·統(tǒng)考三模)函數(shù)SKIPIF1<0的圖象大致為(
)A. B.C. D.【答案】A【詳解】依題意,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),所以D選項(xiàng)錯(cuò)誤;因?yàn)镾KIPIF1<0,所以C選項(xiàng)錯(cuò)誤;因?yàn)镾KIPIF1<0,所以B選項(xiàng)錯(cuò)誤;因此排除了BCD選項(xiàng),而A選項(xiàng)圖象符合函數(shù)SKIPIF1<0的性質(zhì).故選:A.1-2、(2022·江蘇無(wú)錫·高三期末)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象可能是()A. B.C. D.【答案】A【解析】函數(shù)的定義域?yàn)椋篠KIPIF1<0,SKIPIF1<0,SKIPIF1<0為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,排除D.SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0.故選:A.1-3、(2022·廣東汕尾·高三期末)我國(guó)著名數(shù)學(xué)家華羅庚先生曾說(shuō):數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休,在數(shù)學(xué)的學(xué)習(xí)和研究中,函數(shù)的解析式常用來(lái)研究函數(shù)圖象的特征,函數(shù)SKIPIF1<0的圖象大致為()A. B.C. D.【答案】A【解析】SKIPIF1<0所以函數(shù)SKIPIF1<0為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,排除B,D;又SKIPIF1<0,排除C,故選:A.1-4、(2023·四川成都·石室中學(xué)校考模擬預(yù)測(cè))函數(shù)SKIPIF1<0的部分圖象大致形狀是(
)A.
B.
C.
D.
【答案】C【詳解】由SKIPIF1<0,SKIPIF1<0,定義域關(guān)于原點(diǎn)對(duì)稱,得SKIPIF1<0,則函數(shù)SKIPIF1<0是偶函數(shù),圖象關(guān)于SKIPIF1<0軸對(duì)稱,排除BD;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,排除A.故選:C.題組二函數(shù)的性質(zhì)2-1、(2023·黑龍江大慶·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0的定義域均為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.2【答案】A【分析】依題意可得SKIPIF1<0,再由SKIPIF1<0可得SKIPIF1<0,即可得到SKIPIF1<0為偶函數(shù),再由SKIPIF1<0得到SKIPIF1<0,即可得到SKIPIF1<0的周期為SKIPIF1<0,再根據(jù)所給條件計(jì)算可得.【詳解】因?yàn)镾KIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為偶函數(shù).因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周期為SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:A.2-2、(2023·云南·統(tǒng)考一模)(多選題)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】由奇偶函數(shù)的單調(diào)性的關(guān)系確定兩函數(shù)的單調(diào)性,再結(jié)合SKIPIF1<0,SKIPIF1<0逐項(xiàng)判斷即可.【詳解】因?yàn)镾KIPIF1<0是定義在R上的偶函數(shù),SKIPIF1<0是定義在R上的奇函數(shù),且兩函數(shù)在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以BD正確,C錯(cuò)誤;若SKIPIF1<0,則SKIPIF1<0,A錯(cuò)誤.故選:BD.2-3、(2022·山東煙臺(tái)·高三期末)若定義在R上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則滿足SKIPIF1<0的x的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意,定義在R上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,此時(shí)滿足不等式SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,可得SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,可得SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,綜上可得,不等式的解集為SKIPIF1<0.故選:C.2-4、(2022·江蘇如皋·高三期末)“函數(shù)f(x)=sinx+(a-1)cosx為奇函數(shù)”是“a=1”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【解析】【分析】函數(shù)f(x)=sinx+(a-1)cosx為奇函數(shù),則SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),f(x)=sinx是奇函數(shù),因此“函數(shù)f(x)=sinx+(a-1)cosx為奇函數(shù)”是“a=1”充要條件,故選:C.2-5、(2022·江蘇海門·高三期末)寫出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)fx①為偶函數(shù);②fx1x2=fx1+f【答案】?ln【解析】由題意可知函數(shù)為偶函數(shù)且在上為減函數(shù),可取fx=?ln對(duì)于①,函數(shù)fx=?lnx的定義域?yàn)閤x≠0對(duì)于②,對(duì)任意的非零實(shí)數(shù)、,fx1x對(duì)于③,當(dāng)x∈0,+∞時(shí),fx=?ln綜上所述,函數(shù)fx故答案為:?ln題組三、函數(shù)性質(zhì)的綜合運(yùn)用3-1、(2023·浙江·統(tǒng)考模擬預(yù)測(cè))(多選題)已知定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0.下列說(shuō)法正確的是(
)A.3是函數(shù)SKIPIF1<0的一個(gè)周期B.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱C.函數(shù)SKIPIF1<0是偶函數(shù)D.SKIPIF1<0【答案】AC【詳解】對(duì)于A項(xiàng),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以3是函數(shù)SKIPIF1<0的一個(gè)周期,故A正確;對(duì)于B項(xiàng),因?yàn)椋琒KIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以,點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0圖象的對(duì)稱中心,故B錯(cuò)誤;對(duì)于C項(xiàng),因?yàn)?,SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,函數(shù)SKIPIF1<0是偶函數(shù),故C項(xiàng)正確;對(duì)于D項(xiàng),由C知,函數(shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0.又3是函數(shù)SKIPIF1<0的一個(gè)周期,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,故D錯(cuò)誤.故選:AC.3-2、(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)??家荒#ǘ噙x題)已知函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),且對(duì)任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則下列結(jié)論正確的為(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱 D.SKIPIF1<0【答案】ABC【分析】由已知奇偶性得出函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱且關(guān)于直線SKIPIF1<0對(duì)稱,再得出函數(shù)的單調(diào)性,然后由對(duì)稱性變形判斷ABC,結(jié)合單調(diào)性判斷D.【詳解】SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱且關(guān)于直線SKIPIF1<0對(duì)稱,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),4是它的一個(gè)周期.SKIPIF1<0,SKIPIF1<0,B正確;SKIPIF1<0,SKIPIF1<0是偶函數(shù),A正確;因此SKIPIF1<0的圖象也關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,C正確;對(duì)任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0是單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故D錯(cuò).故選:ABC.3-3、(2021·山東青島市·高三二模)已知定義在上的函數(shù)的圖象連續(xù)不斷,有下列四個(gè)命題:甲:是奇函數(shù);乙:的圖象關(guān)于直線對(duì)稱;丙:在區(qū)間上單調(diào)遞減;?。汉瘮?shù)的周期為2.如果只有一個(gè)假命題,則該命題是()A.甲 B.乙 C.丙 D.丁【答案】D【解析】由連續(xù)函數(shù)的特征知:由于區(qū)間的寬度為2,所以在區(qū)間上單調(diào)遞減與函數(shù)的周期為2相互矛盾,即丙、丁中有一個(gè)為假命題;若甲、乙成立,即,,則,所以,即函數(shù)的周期為4,即丁為假命題.由于只有一個(gè)假命題,則可得該命題是丁,故選:D.3-4、(2022·江蘇無(wú)錫·高三期末)(多選題)高斯被人認(rèn)為是歷史上最重要的數(shù)學(xué)家之一,并享有“數(shù)學(xué)王子”之稱.有這樣一個(gè)函數(shù)就是以他名字命名的:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),又稱為取整函數(shù).如:SKIPIF1<0,SKIPIF1<0.則下列結(jié)論正確的是()A.函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)遞增函數(shù)B.函數(shù)SKIPIF1<0有SKIPIF1<0個(gè)零點(diǎn)C.SKIPIF1<0是SKIPIF1<0上的奇函數(shù)D.對(duì)于任意實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<0【答案】BD【解析】對(duì)于A,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上不是單調(diào)增函數(shù),所以A錯(cuò).對(duì)于B,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,若函數(shù)SKIPIF1<0要有零點(diǎn),則SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0要想為SKIPIF1<0,必須SKIPIF1<0也為整數(shù),在這個(gè)范圍內(nèi),只有SKIPIF1<0兩個(gè)點(diǎn),所以B正確,對(duì)于C,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不是奇函數(shù),所以C錯(cuò),對(duì)于D,如果我們定義SKIPIF1<0這樣一個(gè)函數(shù),就會(huì)有SKIPIF1<0,同時(shí)有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),會(huì)有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以D正確,故選:BD.1、(2022·山東濟(jì)南·高三期末)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則“SKIPIF1<0是偶函數(shù)”是“SKIPIF1<0是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件【答案】A【解析】偶函數(shù)的圖像關(guān)于SKIPIF1<0軸對(duì)稱,奇函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱,根據(jù)這一特征,若SKIPIF1<0是偶函數(shù),則SKIPIF1<0是偶函數(shù),若SKIPIF1<0是奇函數(shù),SKIPIF1<0也是偶函數(shù),所以“SKIPIF1<0是偶函數(shù)”是“SKIPIF1<0是偶函數(shù)”的充分不必要條件故選:A2、(2022·山東德州·高三期末)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的大致圖象為()A. B.C. D.【答案】D【解析】由題可知:函數(shù)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故該函數(shù)為奇函數(shù),排除A,C又SKIPIF1<0,所以排除B,故選:D3.(2023·安徽安慶·??家荒#┖瘮?shù)SKIPIF1<0與SKIPIF1<0在同一直角坐標(biāo)系下的圖象大致是(
)A. B.C. D.【答案】B【分析】根據(jù)SKIPIF1<0,SKIPIF1<0,結(jié)合對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性判斷即可.【詳解】SKIPIF1<0,為定義域上的單調(diào)遞增函數(shù)SKIPIF1<0,故SKIPIF1<0不成立;SKIPIF1<0,為定義域上的單調(diào)遞增函數(shù),SKIPIF1<0,故C和D不成立.故選:B.4、(2023·江蘇南通·統(tǒng)考一模)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0為偶函數(shù),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)SKIPIF1<0,滿足題意,即可求解.【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,設(shè)SKIPIF1<0,SKIPIF1<0,關(guān)于SKIPIF1<0對(duì)稱,SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0,即SKIPIF1<0滿足條件,SKIPIF1<0.故選:A.5、(2023·江蘇南京·??家荒#ǘ噙x題)已知函數(shù)SKIPIF1<0則下列結(jié)論正確的是(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0是增函數(shù) D.SKIPIF1<0的值域?yàn)镾KIPIF1<0【答案】BD【分析】利用反例可判斷AC錯(cuò)誤,結(jié)合函數(shù)的解析式可判斷BD為正確,從而可得正確的選項(xiàng).【詳解】SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0不是偶函數(shù),故A錯(cuò)誤.因?yàn)镾KIPIF1<0,故SKIPIF1<0不是增函數(shù),故C錯(cuò)誤.SKIPIF1<0,故B正確.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0的值域?yàn)镾KIPIF1<0,故D正確.故選:BD.6、(2023·江蘇南通·統(tǒng)考模擬預(yù)測(cè))(多選題)已知偶函數(shù)SKIPIF1<0與奇函數(shù)SKIPIF1<0的定義域均為R,且滿足SKIPIF1<0,SKIPIF1<0,則下列關(guān)系式一定成立的是(
)A.SKIPIF1<0 B.f(1)=3C.g(x)=-g(x+3) D.SKIPIF1<0【答案】AD【分析】根據(jù)函數(shù)的奇偶性及所給抽象函數(shù)的性質(zhì),利用SKIPIF1<0換為SKIPIF1<0可判斷A,利用賦值可判斷B,推理得出SKIPIF1<0后賦值可判斷C,由條件推理可得SKIPIF1<0,即可判斷D.【詳解】由SKIPIF1<0,將SKIPIF1<0換為SKIPIF1<0知SKIPIF1<0,故A對(duì);SKIPIF1<0,奇函數(shù)SKIPIF1<0中SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0為偶函數(shù),SKIPIF1<0,故B錯(cuò);SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故C錯(cuò),SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.SKIPI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 木工裝修合同
- 保健按摩店裝修合同監(jiān)管費(fèi)
- 水利行業(yè)水資源管理與水生態(tài)修復(fù)方案
- 專利代理合同書年
- 三農(nóng)村社會(huì)組織創(chuàng)新發(fā)展方案
- 留學(xué)服務(wù)合同
- 品牌營(yíng)銷策略及市場(chǎng)分析作業(yè)指導(dǎo)書
- 數(shù)字化工廠設(shè)計(jì)與實(shí)施作業(yè)指導(dǎo)書
- 旅游景點(diǎn)智能化管理系統(tǒng)的設(shè)計(jì)與實(shí)施計(jì)劃書
- 三農(nóng)地區(qū)基礎(chǔ)設(shè)施建設(shè)規(guī)劃方案
- 2025民政局離婚協(xié)議書范本(民政局官方)4篇
- 島津氣相色譜培訓(xùn)
- 2024年03月四川農(nóng)村商業(yè)聯(lián)合銀行信息科技部2024年校園招考300名工作人員筆試歷年參考題庫(kù)附帶答案詳解
- 小學(xué)一年級(jí)數(shù)學(xué)上冊(cè)口算練習(xí)題總匯
- 睡眠專業(yè)知識(shí)培訓(xùn)課件
- 潤(rùn)滑油知識(shí)-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 臨床思維能力培養(yǎng)
- 人教版高中物理必修第三冊(cè)第十章靜電場(chǎng)中的能量10-1電勢(shì)能和電勢(shì)練習(xí)含答案
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)
- 中國(guó)宗教文化 中國(guó)古代宗教文化的特點(diǎn)及現(xiàn)代意義
評(píng)論
0/150
提交評(píng)論