新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(原卷版)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題2-1函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)目錄TOC\o"1-1"\h\u題型01奇偶性基礎(chǔ) 1題型02中心對稱型函數(shù) 2題型03軸對稱型函數(shù) 3題型04斜直線軸對稱型 3題型05“正余弦”型對稱 4題型06伸縮型對稱 5題型07一元三次函數(shù)型中心對稱 6題型08“局部周期”型函數(shù)性質(zhì) 7題型09雙函數(shù)型對稱 8題型10原函數(shù)與導(dǎo)函數(shù)型雙函數(shù)對稱 9題型11放大鏡型函數(shù)性質(zhì) 10題型12抽象函數(shù)賦值型性質(zhì) 11題型13對稱型恒成立求參 11題型14構(gòu)造“對稱”型函數(shù) 12高考練場 13題型01奇偶性基礎(chǔ)【解題攻略】奇偶函數(shù)的性質(zhì)①偶函數(shù)?f(-x)=f(x)?關(guān)于y軸對稱?對稱區(qū)間的單調(diào)性相反;②奇函數(shù)?f(-x)=-f(x)?關(guān)于原點(diǎn)對稱?對稱區(qū)間的單調(diào)性相同;③奇函數(shù)在x=0處有意義時(shí),必有結(jié)論f(0)=0;奇偶性的判定①“奇±奇”是奇,“偶±偶”是偶,“奇×/÷奇”是偶,“偶×/÷偶”是偶,“奇×/÷偶”是奇;②奇(偶)函數(shù)倒數(shù)或相反數(shù)運(yùn)算,奇偶性不變; ③奇(偶)函數(shù)的絕對值運(yùn)算,函數(shù)的奇偶性均為偶函數(shù).【典例1-1】(2023秋·山西·高三校聯(lián)考期中)已知函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0的值是(

)A.0 B.SKIPIF1<0 C.12 D.10【典例1-2】(2023秋·北京昌平·高三北京市昌平區(qū)前鋒學(xué)校校考階段練習(xí))已知SKIPIF1<0,則(

)A.SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上單調(diào)遞增B.SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上單調(diào)遞減C.SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)遞增D.SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)遞減【變式1-1】.(2023·全國·高一專題練習(xí))若SKIPIF1<0為奇函數(shù),則SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023秋·江蘇南通·高三統(tǒng)考開學(xué)考試)已知SKIPIF1<0是奇函數(shù),則SKIPIF1<0在SKIPIF1<0處的切線方程是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】.(2023秋·天津和平·高三天津一中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對任意SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型02中心對稱型函數(shù)【解題攻略】中心對稱結(jié)論:(1)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0(2)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0(3)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0.【典例1-1】已知函數(shù)SKIPIF1<0,則存在非零實(shí)數(shù)SKIPIF1<0,使得()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0圖象的所有交點(diǎn)的橫坐標(biāo)之和為___________.【變式1-1】.設(shè)函數(shù)SKIPIF1<0的最大值為5,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.1 C.2 D.3【變式1-2】已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0使關(guān)于SKIPIF1<0的不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的范圍為___________.【變式1-3】.函數(shù)SKIPIF1<0的圖像可能是()A. B.C. D.題型03軸對稱型函數(shù)【解題攻略】軸對稱性的常用結(jié)論如下:若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0(4)f(a-x)=f(b+x)?f(x)的圖象關(guān)于直線x=eq\f(a+b,2)對稱;【典例1-1】.(2023上·重慶·高三重慶市忠縣忠州中學(xué)校校聯(lián)考)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0為偶函數(shù),且對SKIPIF1<0都有SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是.【典例1-2】(2023上·江西景德鎮(zhèn)·高一統(tǒng)考期中)已知函數(shù)SKIPIF1<0滿足關(guān)系式SKIPIF1<0,且對于SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0恒成立,若不等式SKIPIF1<0對SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是.【變式1-1】.(2023上·江蘇南通·高三統(tǒng)考階段練習(xí))設(shè)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,且SKIPIF1<0為偶函數(shù),若SKIPIF1<0,SKIPIF1<0,且有SKIPIF1<0,則SKIPIF1<0的最小值為.【變式1-2】(2023上·山東濟(jì)南·高三統(tǒng)考開學(xué)考試)若函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,且SKIPIF1<0有且僅有4個(gè)零點(diǎn),則SKIPIF1<0的值為.【變式1-3】.(2023上·陜西榆林·高三??茧A段練習(xí))函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且圖象關(guān)于SKIPIF1<0對稱,在區(qū)間SKIPIF1<0上,SKIPIF1<0,則SKIPIF1<0.題型04斜直線軸對稱型【解題攻略】關(guān)于斜直線軸對稱,可以借鑒圓錐曲線中直線的對稱性來處理(1)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,則有SKIPIF1<0;(2)直線關(guān)于直線的對稱可轉(zhuǎn)化為點(diǎn)關(guān)于直線的對稱問題來解決.如果斜直線軸對稱,還有以下經(jīng)驗(yàn)公式:如果對稱軸所在的直線斜率是SKIPIF1<0,即直線是SKIPIF1<0型,可以利用反解對稱軸法直接求出對稱變換式子SKIPIF1<0(1)如果SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0的坐標(biāo)為SKIPIF1<0;(2)如果SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0的坐標(biāo)為SKIPIF1<0.【典例1-1】(2023上·重慶·高三西南大學(xué)附中校考)已知函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0的函數(shù)圖象關(guān)于SKIPIF1<0對稱,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.【典例1-2】(2023上·遼寧·高三校聯(lián)考)已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且其圖象關(guān)于直線SKIPIF1<0對稱,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.【變式1-1】(2023上·遼寧大連·高三大連八中??计谥校┮阎瘮?shù)SKIPIF1<0,若曲線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的值為.【變式1-2】(2023上·上海浦東新·高三華師大二附中??迹┮阎瘮?shù)SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0,且關(guān)于直線SKIPIF1<0成軸對稱圖形,則SKIPIF1<0.【變式1-3】(2021上·高一??颊n時(shí)練習(xí))若函數(shù)SKIPIF1<0的圖象與SKIPIF1<0且SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的值等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型05“正余弦”型對稱【解題攻略】SKIPIF1<0(1)兩中心SKIPIF1<0;(2)兩垂直軸SKIPIF1<0則SKIPIF1<0;(3)一個(gè)中心SKIPIF1<0,一條軸SKIPIF1<0,則SKIPIF1<0【典例1-1】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若函數(shù)SKIPIF1<0恰有一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值集合是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】.定義在SKIPIF1<0上的偶函數(shù)f(x)滿足f(-x)+f(x-2)=0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(已知SKIPIF1<0),則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足條件SKIPIF1<0,且函數(shù)SKIPIF1<0為奇函數(shù),則下列說法中錯(cuò)誤的是(

)A.函數(shù)SKIPIF1<0是周期函數(shù);B.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱;C.函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù);D.函數(shù)SKIPIF1<0為SKIPIF1<0上的單調(diào)函數(shù).【變式1-2】已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為偶函數(shù),則下列結(jié)論不一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】.定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0;且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.則方程SKIPIF1<0所有的根之和為(

)A.6 B.12 C.14 D.10題型06伸縮型對稱【解題攻略】伸縮變換y=f(ax)y=f(x)eq\o(→,\s\up7(a>1,縱坐標(biāo)伸長為原來的a倍,橫坐標(biāo)不變),\s\do5(0<a<1,縱坐標(biāo)縮短為原來的a倍,橫坐標(biāo)不變))y=af(x)【典例1-1】(2023秋·湖南懷化·高三統(tǒng)考)已知SKIPIF1<0不是常函數(shù),且是定義域?yàn)镾KIPIF1<0的奇函數(shù),若SKIPIF1<0的最小正周期為1,則(

)A.SKIPIF1<0 B.1是SKIPIF1<0的一個(gè)周期C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023·河南·長葛市第一高級中學(xué)統(tǒng)考模擬預(yù)測)若函數(shù)f(x)的定義域?yàn)镽,且f(2x+1)為偶函數(shù),f(x-1)的圖象關(guān)于點(diǎn)(3,3)成中心對稱,則下列說法正確的個(gè)數(shù)為(

)①SKIPIF1<0的一個(gè)周期為2

②SKIPIF1<0③SKIPIF1<0④直線SKIPIF1<0是SKIPIF1<0圖象的一條對稱軸A.1 B.2 C.3 D.4【變式1-1】(2022秋·重慶南岸·高三重慶市第十一中學(xué)校校考階段練習(xí))已知SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),SKIPIF1<0是奇函數(shù),且SKIPIF1<0是偶函數(shù),則下列選項(xiàng)一定正確的是(

)A.函數(shù)SKIPIF1<0的周期為2 B.函數(shù)SKIPIF1<0的周期為3C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】.(2022秋·吉林長春·高三長春市第二中學(xué)校考階段練習(xí))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),則一定有(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022秋·廣西玉林·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型07一元三次函數(shù)型中心對稱【解題攻略】所有的三次函數(shù)SKIPIF1<0都有“拐點(diǎn)”,且該“拐點(diǎn)”也是函數(shù)SKIPIF1<0的圖像的對稱中心,設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)數(shù),SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),若方程SKIPIF1<0有實(shí)數(shù)解SKIPIF1<0,則稱點(diǎn)SKIPIF1<0為函數(shù)SKIPIF1<0的“拐點(diǎn)”.【典例1-1】.給出定義:設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),若方程SKIPIF1<0有實(shí)數(shù)解SKIPIF1<0,則稱SKIPIF1<0為函數(shù)SKIPIF1<0的“拐點(diǎn)”.經(jīng)研究發(fā)現(xiàn)所有的三次函數(shù)SKIPIF1<0都有“拐點(diǎn)”,且該“拐點(diǎn)”也是函數(shù)SKIPIF1<0的圖像的對稱中心,若函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.8082 B.2021 C.-8082 D.-2023【典例1-2】已知一元三次函數(shù)對稱中心的橫坐標(biāo)為其二階導(dǎo)函數(shù)的零點(diǎn).若SKIPIF1<0,則SKIPIF1<0(

)A.0 B.4 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】在同一坐標(biāo)系中作出三次函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)的圖象,下列可能正確的序號是(

)A.①② B.①③ C.③④ D.①④【變式1-2】設(shè)函數(shù)SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),經(jīng)過探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)SKIPIF1<0SKIPIF1<0的圖象都有對稱中心SKIPIF1<0,其中SKIPIF1<0滿足SKIPIF1<0,已知函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【變式1-3】一般地,對于一元三次函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0為三次函數(shù)SKIPIF1<0的對稱中心,已知函數(shù)SKIPIF1<0圖象的對稱中心的橫坐標(biāo)為SKIPIF1<0,且SKIPIF1<0有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型08“局部周期”型函數(shù)性質(zhì)【解題攻略】局部周期函數(shù),可類比以下函數(shù)圖像:SKIPIF1<0【典例1-1】定義在0,+∞上的函數(shù)fx滿足f(i)f2021(ii)若方程fx?kx=0有且只有兩個(gè)解,則實(shí)數(shù)福建省長汀縣第一中學(xué)2022屆高三上學(xué)期第二次月考數(shù)學(xué)試題【典例1-2】.已知fx=12x+a,x≤0,fx?1【變式1-1】(2021下·天津武清·高三天津市武清區(qū)楊村第一中學(xué)校)已知函數(shù)SKIPIF1<0,若對于正數(shù)SKIPIF1<0,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖像恰好有SKIPIF1<0個(gè)不同的交點(diǎn),則SKIPIF1<0.【變式1-2】.(2021上·四川資陽·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的圖象的公共點(diǎn)個(gè)數(shù)為.題型09雙函數(shù)型對稱【解題攻略】雙函數(shù)性質(zhì):1.雙函數(shù)各自對應(yīng)的對稱中心和對稱軸等性質(zhì)2.雙函數(shù)之間存在著互相轉(zhuǎn)化或者互相表示的函數(shù)等量關(guān)系【典例1-1】(2023·廣西玉林·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0的定義域均為SKIPIF1<0,SKIPIF1<0是奇函數(shù),且SKIPIF1<0,SKIPIF1<0,則(

)A.f(x)為奇函數(shù) B.g(x)為奇函數(shù)C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023春·河南開封·高三統(tǒng)考開學(xué)考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為偶函數(shù).SKIPIF1<0,則SKIPIF1<0(

)A.24 B.26 C.28 D.30【變式1-1】(2023秋·江西·高三校聯(lián)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0的定義域均為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,且SKIPIF1<0,則SKIPIF1<0(

)A.80 B.86 C.90 D.96【變式1-2】(2023秋·全國·高三校聯(lián)考階段練習(xí))SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0且SKIPIF1<0,則下列說法不正確的是(

)A.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱 B.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱C.4為SKIPIF1<0的周期 D.SKIPIF1<0【變式1-3】(2022秋·四川成都·高三成都七中校考專題練習(xí))已知函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0為偶函數(shù),且SKIPIF1<0,SKIPIF1<0,下列說法正確的有(

)A.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱B.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱C.函數(shù)SKIPIF1<0是以4為周期的周期函數(shù)D.函數(shù)SKIPIF1<0是以6為周期的周期函數(shù)題型10原函數(shù)與導(dǎo)函數(shù)型雙函數(shù)對稱【解題攻略】原函數(shù)與導(dǎo)函數(shù)的性質(zhì)性質(zhì)1若函數(shù)SKIPIF1<0是可導(dǎo)函數(shù),且圖像關(guān)于SKIPIF1<0對稱,則其導(dǎo)函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱性質(zhì)2奇函數(shù)的導(dǎo)數(shù)為偶函數(shù)性質(zhì)3若函數(shù)SKIPIF1<0是可導(dǎo)函數(shù),且圖像關(guān)于SKIPIF1<0對稱,則其導(dǎo)函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱性質(zhì)4偶函數(shù)的導(dǎo)數(shù)為奇函數(shù)性質(zhì)5若函數(shù)SKIPIF1<0是可導(dǎo)函數(shù),且圖像關(guān)于SKIPIF1<0對稱,則其導(dǎo)函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱偶函數(shù)的導(dǎo)數(shù)為奇函數(shù)性質(zhì)6若定義在R上的函數(shù)SKIPIF1<0是可導(dǎo)函數(shù),且周期為T,則其導(dǎo)函數(shù)SKIPIF1<0是周期函數(shù),且周期也為T性質(zhì)7若函數(shù)SKIPIF1<0是可導(dǎo)函數(shù),定義域?yàn)镈,其導(dǎo)函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0圖像關(guān)于SKIPIF1<0對稱,SKIPIF1<0為定義域內(nèi)任意一點(diǎn)【典例1-1】(2023·四川成都·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0是偶函數(shù),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.2022 B.2023 C.2024 D.2025【典例1-2】(2022上·四川遂寧·高三射洪中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0定義域均為SKIPIF1<0,SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0,則正確的有(

)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.A.①④ B.①② C.②③ D.③④【變式1-1】(2023·廣西梧州·蒼梧中學(xué)??寄M預(yù)測)設(shè)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0與SKIPIF1<0的導(dǎo)函數(shù)分別為SKIPIF1<0和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0為奇函數(shù),SKIPIF1<0.現(xiàn)有下列四個(gè)結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中所有正確結(jié)論的序號是(

)A.①②③ B.②③④ C.①③④ D.①②④【變式1-2】(2023·全國·高三專題練習(xí))設(shè)定義在R上的函數(shù)SKIPIF1<0與SKIPIF1<0的導(dǎo)函數(shù)分別為SKIPIF1<0和SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0為奇函數(shù),則下列說法中一定正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0【變式1-3】7.設(shè)定義在實(shí)數(shù)集SKIPIF1<0上的函數(shù)SKIPIF1<0與SKIPIF1<0的導(dǎo)數(shù)分別為SKIPIF1<0與SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0為奇函數(shù),則下列說法不正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱C.SKIPIF1<0 D.SKIPIF1<0遼寧省沈陽市第二中學(xué)2022-2023學(xué)年高三上學(xué)期12月月考數(shù)學(xué)試題題型11放大鏡型函數(shù)性質(zhì)【解題攻略】形如SKIPIF1<0等“似周期函數(shù)”或者“類周期函數(shù)”,俗稱放大鏡函數(shù),要注意以下幾點(diǎn)辨析:1.是從左往右放大,還是從右往左放大。2.放大(縮小)時(shí),要注意是否函數(shù)值有0。3.放大(縮小)時(shí),是否發(fā)生了上下平移。4.“放大鏡”函數(shù),在尋找“切線”型臨界值時(shí),計(jì)算容易“卡殼”,授課時(shí)要著重講清此處計(jì)算。【典例1-1】定義在SKIPIF1<0上函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則使得SKIPIF1<0在SKIPIF1<0上恒成立的SKIPIF1<0的最小值是______________.【典例1-2】.已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有下列結(jié)論:①函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有且僅有SKIPIF1<0個(gè)不同的交點(diǎn);③若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有SKIPIF1<0個(gè)不相等的實(shí)數(shù)根,則這SKIPIF1<0個(gè)實(shí)數(shù)根之和為SKIPIF1<0;④記函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.其中所有正確結(jié)論的編號是___________.【變式1-1】已知定義在[1,+∞)上的函數(shù)f(x)=4?A.在[1,6]上,方程f(x)?16x=0B.關(guān)于x的方程f(x)?12nC.當(dāng)x∈[2n?1,2n](n∈D.對于實(shí)數(shù)x∈[1,+∞),不等式xf(x)≤6恒成立【變式1-2】設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若對任意SKIPIF1<0,都有SKIPIF1<0,則m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】.定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0時(shí),SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型12抽象函數(shù)賦值型性質(zhì)【典例1-1】(2023春·遼寧·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),且在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,對SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0.若SKIPIF1<0,使得不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的最大值為.【典例1-2】.(2023·全國·高三對口高考)已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0對任意實(shí)數(shù)x,y滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.給出下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0為奇函數(shù);③SKIPIF1<0為周期函數(shù);④SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減.其中正確結(jié)論的序號是.【變式1-1】(2023·江蘇南通·統(tǒng)考模擬預(yù)測)若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【變式1-2】(2023·浙江·高三專題練習(xí))若定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則滿足上述條件的函數(shù)SKIPIF1<0可以為.(寫出一個(gè)即可)【變式1-3】(2022秋·湖南衡陽·高三衡陽市一中??迹┒x在R上的函數(shù)f(x)滿足SKIPIF1<0x,ySKIPIF1<0R,SKIPIF1<0且f(0)SKIPIF1<00,f(a)=0(a>0).則下列結(jié)論正確的序號有.①f(0)=1;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.題型13對稱型恒成立求參【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0的值域是SKIPIF1<0值域的子集【典例1-1】.(2021上·江蘇南京·高三南京市中華中學(xué)??计谀┒x在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,若對任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020·湖南永州·統(tǒng)考三模)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若對任意的SKIPIF1<0,SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2021上·上海浦東新·高三上海市建平中學(xué)校考階段練習(xí))已知SKIPIF1<0,滿足對于任意的SKIPIF1<0,都有SKIPIF1<0,設(shè)SKIPIF1<0,若對于任意的SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【變式1-2】.(2018上·上海奉賢·高一上海市奉賢中學(xué)校考階段練習(xí))設(shè)函數(shù)SKIPIF1<0,對任意非零實(shí)數(shù)SKIPIF1<0,若等式SKIPIF1<0成立,則正整數(shù)SKIPIF1<0的值為.【變式1-3】已知SKIPIF1<0是定義在R上的函數(shù),且SKIPIF1<0關(guān)于直線SKIPIF1<0對稱.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若對任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型14構(gòu)造“對稱”型函數(shù)【典例1-1】(2021上·湖北·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.前三個(gè)答案都不對【典例1-2】(2022上·上海徐匯·高三上海市南洋模范中學(xué)??茧A段練習(xí))設(shè)SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0.【變式1-1】(2022·全國·高三專題練習(xí))已知SKIPIF1<0,那么SKIPIF1<0的值是.【變式1-2】(2021上·浙江寧波·高三余姚中學(xué)校考)已知SKIPIF1<0滿足SKIPIF1<0,若對任意的SKIPIF1<0,SKIPIF1<0恒成立,則實(shí)數(shù)k的最小值為.高考練場1.(2022秋·云南保山·高三統(tǒng)考階段練習(xí))設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0是奇函數(shù),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02..已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,若函數(shù)SKIPIF1<0與SKIPIF1<0圖像的交點(diǎn)為SKIPIF1<0,則SKIPIF1<0____________.3.(2023上·貴州貴陽·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.4.(2023上·上海閔行·高三校聯(lián)考期中)設(shè)曲線SKIPIF1<0與函數(shù)SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,設(shè)曲線SKIPIF1<0仍然是某函數(shù)的圖像,則實(shí)數(shù)SKIPIF1<0的取值范圍是.5.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06..(2023秋·重慶九龍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論