版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題2-4構(gòu)造函數(shù)以及切線歸類目錄TOC\o"1-1"\h\u題型01切線求參 1題型02求“過點”型切線方程 2題型03“過點”切線求參 3題型04“過點”切線條數(shù)的判斷 3題型05由切線條數(shù)求參 4題型06公切線 4題型07特殊構(gòu)造:冪積型構(gòu)造 5題型08特殊構(gòu)造:冪商型構(gòu)造 6題型09特殊構(gòu)造:ex的積型構(gòu)造 6題型10特殊構(gòu)造:ex的商型構(gòu)造 7題型11特殊構(gòu)造:對數(shù)型構(gòu)造 8題型12特殊構(gòu)造:正弦型構(gòu)造 9題型13特殊構(gòu)造:余弦型構(gòu)造 10題型14復(fù)合型構(gòu)造 11高考練場 12題型01切線求參【解題攻略】求曲線y=f(x)在點P(x0,f(x0))處的切線方程:(1)求出函數(shù)y=f(x)在點x=x0處的導(dǎo)數(shù),即曲線y=f(x)在點P(x0,f(x0))處切線的斜率.(2)切線方程為:y=y(tǒng)0+f′(x0)(x-x0).1、設(shè)切點(或者給出了切點):P(x0,y0)2、y0=f(x0)3、y=f′(x)SKIPIF1<0k=f′(x0)4、切線方程:y-y0=k(x-x0)【典例1-1】(2023春·重慶·高二校聯(lián)考期中)若函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.2或SKIPIF1<0 C.2 D.1或SKIPIF1<0【典例1-2】(山東省煙臺市2021-2022學(xué)年高三數(shù)學(xué)試題)已知曲線SKIPIF1<0在點(0,1)處的切線與曲線SKIPIF1<0只有一個公共點,則實數(shù)a的值為(
)A.SKIPIF1<0 B.1 C.2 D.SKIPIF1<0【變式1-1】(河南省鄭州市2021-2022學(xué)年高三考試數(shù)學(xué)(理科)試題)若曲線SKIPIF1<0在點SKIPIF1<0處的切線與直線SKIPIF1<0平行,則SKIPIF1<0___________.【變式1-2】(河南省許昌市2021-2022學(xué)年高三數(shù)學(xué)文科試題)已知曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0___________.【變式1-3】已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象過定點SKIPIF1<0,若曲線SKIPIF1<0在SKIPIF1<0處的切線經(jīng)過點SKIPIF1<0,則實數(shù)SKIPIF1<0的值為______.題型02求“過點”型切線方程【解題攻略】1、設(shè)切點(或者給出了切點):P(x0,y0)2、y0=f(x0)3、y=f′(x)SKIPIF1<0k=f′(x0)4、切線方程:y-y0=k(x-x0)5、過(a,b),代入y-y0=k(x-x0),得SKIPIF1<0【典例1-1】(2023下·上海嘉定·高三上海市嘉定區(qū)第一中學(xué)??迹┮阎€SKIPIF1<0,過點SKIPIF1<0作曲線的切線,則切線方程.【典例1-2】(2023下·上海浦東新·高三上海市實驗學(xué)校校考開學(xué)考試)已知曲線SKIPIF1<0,過點SKIPIF1<0作曲線的切線,則切線的方程為.【變式1-1】)(云南民族大學(xué)附屬中學(xué)2022屆高三高考押題卷二數(shù)學(xué)(理)試題)函數(shù)SKIPIF1<0過原點的切線方程是_______.【變式1-2】(2023春·河北邢臺·高三統(tǒng)考)過點SKIPIF1<0作曲線SKIPIF1<0的切線,則該切線的斜率為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】((天津市北京師范大學(xué)天津附屬中學(xué)2022-2023學(xué)年高三線上檢測數(shù)學(xué)試題))過點SKIPIF1<0作曲線SKIPIF1<0的切線,則切線方程是__________..題型03“過點”切線求參【典例1-1】(2023上·遼寧錦州·高三渤海大學(xué)附屬高級中學(xué)??计谥校┮阎€SKIPIF1<0過點SKIPIF1<0處的切線與曲線SKIPIF1<0相切,則SKIPIF1<0【典例1-2】(2023下·吉林長春·高二長春市實驗中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,過點SKIPIF1<0作與SKIPIF1<0軸平行的直線交函數(shù)SKIPIF1<0的圖象于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0的切線交SKIPIF1<0軸于點SKIPIF1<0,則SKIPIF1<0面積的最小值.【變式1-1】(2023·河北保定·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,過點SKIPIF1<0且平行于SKIPIF1<0軸的直線與曲線SKIPIF1<0的交點為SKIPIF1<0,曲線SKIPIF1<0過點SKIPIF1<0的切線交SKIPIF1<0軸于點SKIPIF1<0,則SKIPIF1<0面積的最小值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023上·貴州貴陽·高三貴陽一中??茧A段練習(xí))已知曲線SKIPIF1<0,過點SKIPIF1<0作該曲線的兩條切線,切點分別為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【變式1-3】.直線SKIPIF1<0是曲線SKIPIF1<0的切線,則SKIPIF1<0______.題型04“過點”切線條數(shù)的判斷【解題攻略】“過點型”切線條數(shù)判斷:有幾個切點橫坐標(biāo),就有幾條切線。切線條數(shù)判斷,轉(zhuǎn)化為關(guān)于切點橫坐標(biāo)的新的函數(shù)零點個數(shù)判斷?!镜淅?-1】.(湖南省邵陽市武岡市2022-2023學(xué)年高三上學(xué)期數(shù)學(xué)試題)已知SKIPIF1<0是奇函數(shù),則過點SKIPIF1<0向曲線SKIPIF1<0可作的切線條數(shù)是(
)A.1 B.2 C.3 D.不確定【典例1-2】已知曲線SKIPIF1<0,則過點SKIPIF1<0可向SKIPIF1<0引切線,其切線條數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(湖南省長沙市長郡中學(xué)2021屆高三第一次暑假作業(yè)檢測數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,過點SKIPIF1<0可作曲線SKIPIF1<0切線的條數(shù)為A.0 B.1 C.2 D.3【變式1-2】(2021-2022學(xué)年廣東省東莞市高三數(shù)學(xué)A卷)已知函數(shù)SKIPIF1<0,則過點(0,0)可作曲線SKIPIF1<0的切線的條數(shù)為(
)A.3 B.0 C.1 D.2【變式1-3】(北京市北京理工大學(xué)附屬中學(xué)通州校區(qū)2019-2020學(xué)年高三年級考試數(shù)學(xué)試題)已知過點SKIPIF1<0且與曲線SKIPIF1<0相切的直線的條數(shù)有(
)條.A.0 B.1 C.2 D.3題型05由切線條數(shù)求參【典例1-1】若過點SKIPIF1<0可作出曲線SKIPIF1<0的三條切線,則實數(shù)SKIPIF1<0的取值范圍是___________【典例1-2】(福建省福州華僑中學(xué)2023屆高三上學(xué)期第二次考試數(shù)學(xué)試題)若曲線SKIPIF1<0有兩條過坐標(biāo)原點的切線,則a的取值范圍為__________.【變式1-1】過點SKIPIF1<0作曲線SKIPIF1<0的切線,若切線有且只有兩條,則實數(shù)SKIPIF1<0的取值范圍是___________.【變式1-2】若曲線SKIPIF1<0有兩條過坐標(biāo)原點的切線,則a的取值范圍是________________.【變式1-3】(2023·全國·高三專題練習(xí))已知過點SKIPIF1<0作曲線SKIPIF1<0的切線有且僅有兩條,則實數(shù)a的取值可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型06公切線【解題攻略】交點處公切線,可以直接參照直線在點處的切線求法設(shè)交點(切點)對函數(shù)SKIPIF1<0,如果要求它們的圖象的公切線,只需分別寫出兩條切線:SKIPIF1<0)
和SKIPIF1<0再令
SKIPIF1<0
,消去一個變量后,再討論得到的方程的根的個數(shù)即可。但在這里需要注意
x1
和
x2
的范圍,例如,若f(x)=lnx,則要求
x1>0
【典例1-1】已知直線SKIPIF1<0是函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的公切線,若SKIPIF1<0是直線SKIPIF1<0與函數(shù)SKIPIF1<0相切的切點,則SKIPIF1<0____________.【典例1-2】(2023春·高三課時練習(xí))已知直線SKIPIF1<0:SKIPIF1<0既是曲線SKIPIF1<0的切線,又是曲線SKIPIF1<0的切線,則SKIPIF1<0(
)A.0 B.SKIPIF1<0 C.0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【變式1-1】(2023·全國·高三專題練習(xí))若直線SKIPIF1<0是曲線SKIPIF1<0的切線,也是SKIPIF1<0的切線,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022·黑龍江哈爾濱·哈爾濱三中校考模擬預(yù)測)曲線SKIPIF1<0過點SKIPIF1<0的切線也是曲線SKIPIF1<0的切線,則SKIPIF1<0;若此公切線恒在函數(shù)SKIPIF1<0的圖象上方,則a的取值范圍是.【變式1-3】若曲線SKIPIF1<0與曲線SKIPIF1<0存在2條公共切線,則a的值是_________..題型07特殊構(gòu)造:冪積型構(gòu)造【解題攻略】冪函數(shù)積形式構(gòu)造:1.對于SKIPIF1<0構(gòu)造SKIPIF1<02.對于SKIPIF1<0構(gòu)造SKIPIF1<0【典例1-1】設(shè)定義在SKIPIF1<0的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0,則關(guān)于x的不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】已知定義域為SKIPIF1<0的奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系正確的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】已知定義在R上的偶函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0.當(dāng)SKIPIF1<0時,恒有SKIPIF1<0,若SKIPIF1<0,則不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】.已知奇函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】已知奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關(guān)系正確的是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型08特殊構(gòu)造:冪商型構(gòu)造【解題攻略】冪函數(shù)商形式構(gòu)造:1.對于SKIPIF1<0構(gòu)造SKIPIF1<02.對于SKIPIF1<0構(gòu)造SKIPIF1<0【典例1-1】(江西省宜春市奉新縣第一中學(xué)2019-2020學(xué)年高三第一次月考數(shù)學(xué)試題)已知函數(shù)f(x)是定義在R上的奇函數(shù),f′(x)為f(x)的導(dǎo)函數(shù),且滿足當(dāng)x<0時,有xf′(x)﹣f(x)<0,則不等式f(x)﹣xf(1)>0的解集為()A.(﹣1,0)∪(1,+∞) B.(﹣∞,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣1,0)∪(0,1)【典例1-2】(2020屆高三1月)》函數(shù)SKIPIF1<0在定義域SKIPIF1<0內(nèi)恒滿足SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0導(dǎo)函數(shù),則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(四川省宜賓市第四中學(xué)校2019-2020學(xué)年高三考試數(shù)學(xué)試題)設(shè)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為SKIPIF1<0,且有SKIPIF1<0,則不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(湖北省仙桃市漢江中學(xué)2018-2019學(xué)年高三試題)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0,則不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(甘肅省張掖市第二中學(xué)2019-2020學(xué)年高三4月線上測試數(shù)學(xué)(理)試卷)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0若SKIPIF1<0,則實數(shù)m的取值范圍為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型09特殊構(gòu)造:ex的積型構(gòu)造【解題攻略】ex函數(shù)積形式構(gòu)造:1.對于SKIPIF1<0構(gòu)造SKIPIF1<02.對于SKIPIF1<0構(gòu)造SKIPIF1<0【典例1-1】(江西省上饒中學(xué)2019-2020學(xué)年高三上學(xué)期第二次月考數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的可導(dǎo)函數(shù),SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023春·黑龍江哈爾濱·高三哈師大附中??茧A段練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023春·重慶沙坪壩·高三重慶八中校考)設(shè)函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0是其導(dǎo)函數(shù),若SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023春·河南洛陽·高三統(tǒng)考)設(shè)SKIPIF1<0是定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0.若SKIPIF1<0(e為自然對數(shù)的底數(shù)),則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022·全國·高三專題練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,滿足SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,其中SKIPIF1<0是自然對數(shù)的底數(shù).則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型10特殊構(gòu)造:ex的商型構(gòu)造【解題攻略】ex函數(shù)商形式構(gòu)造:1.SKIPIF1<0,2.SKIPIF1<0【典例1-1】定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,滿足:SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】已知在SKIPIF1<0上的可導(dǎo)函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,滿足SKIPIF1<0,且SKIPIF1<0為偶函數(shù),SKIPIF1<0,則不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為SKIPIF1<0,f(0)=1,且SKIPIF1<0,則SKIPIF1<0的解集是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型11特殊構(gòu)造:對數(shù)型構(gòu)造【解題攻略】1.SKIPIF1<02.授課時,可以讓學(xué)生寫出y=ln(kx+b)與y=f(x)的加、減、乘、除各種結(jié)果【典例1-1】(2023·江西宜春·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0(其中SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù)),若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列選項中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2022·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0是奇函數(shù)SKIPIF1<0SKIPIF1<0的導(dǎo)函數(shù),SKIPIF1<0時,SKIPIF1<0,則使得SKIPIF1<0成立的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2020上·河南·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0是奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù),且滿足SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023上·河南周口·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,導(dǎo)函數(shù)為SKIPIF1<0,不等式SKIPIF1<0SKIPIF1<0恒成立,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022·廣東梅州·統(tǒng)考二模)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型12特殊構(gòu)造:正弦型構(gòu)造【解題攻略】三角函數(shù)形式構(gòu)造:1.SKIPIF1<0,2.SKIPIF1<03.對于正切型,可以通分(或者去分母)構(gòu)造正弦或者余弦積商型【典例1-1】(2023春·四川成都·高三階段練習(xí))記函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0為奇函數(shù),且當(dāng)SKIPIF1<0時恒有SKIPIF1<0成立,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2021·貴州遵義·高三遵義航天高級中學(xué)階段練習(xí))已知定義在SKIPIF1<0上的函數(shù),SKIPIF1<0為其導(dǎo)函數(shù),且SKIPIF1<0恒成立,則A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023春·重慶·高三統(tǒng)考)設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2023·全國·高三專題練習(xí))已知可導(dǎo)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù).當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2021下·江西·高三校聯(lián)考)已知SKIPIF1<0是定義域為SKIPIF1<0的奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù),當(dāng)SKIPIF1<0時,都有SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型13特殊構(gòu)造:余弦型構(gòu)造【解題攻略】三角函數(shù)形式構(gòu)造:1.SKIPIF1<0,2.SKIPIF1<03.對于正切型,可以通分(或者去分母)構(gòu)造正弦或者余弦積商型【典例1-1】(2020下·安徽六安·高二六安一中校考期中)設(shè)奇函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0的圖象是連續(xù)不間斷,SKIPIF1<0,有SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020下·湖南長沙·高二湖南師大附中??计谀┮阎婧瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0成立,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2020下·廣西桂林·高二校考階段練習(xí))函數(shù)SKIPIF1<0定義在SKIPIF1<0上,SKIPIF1<0是它的導(dǎo)函數(shù),且SKIPIF1<0在定義域內(nèi)恒成立,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2020下·內(nèi)蒙古巴彥淖爾·高二??茧A段練習(xí))已知函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),且對于任意的SKIPIF1<0,都有SKIPIF1<0(其中SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)),則下列不等式成立的是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2021下·江蘇·高二期中)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,其導(dǎo)函數(shù)是SKIPIF1<0.有SKIPIF1<0,則關(guān)于x的不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型14復(fù)合型構(gòu)造【典例1-1】已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,其導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式SKIPIF1<0.若對SKIPIF1<0,不等式SKIPIF1<0恒成立,則正整數(shù)SKIPIF1<0的最大值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若對任意的實數(shù)SKIPIF1<0,都有SKIPIF1<0恒成立,則使SKIPIF1<0成立的實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】設(shè)函數(shù)SKIPIF1<0時定義在SKIPIF1<0上的奇函數(shù),記其導(dǎo)函數(shù)為SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0定義域為R,導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0滿足下列條件:①任意SKIPIF1<0,SKIPIF1<0恒成立,②SKIPIF1<0時,SKIPIF1<0恒成立,則關(guān)于t的不等式:SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】已知函數(shù)SKIPIF1<0,其中SKIPIF1<0為自然對數(shù)的底數(shù).若SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有兩個零點,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0高考練場1.(湖南省永州市2022屆高三下學(xué)期第三次適應(yīng)性考試數(shù)學(xué)試題已知直線SKIPIF1<0:SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0存在切線與SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0__________.2.過點SKIPIF1<0作曲線SKIPIF1<0的兩條切線,則這兩條切線的斜率之和為______.3.(2022·全國·高三專題練習(xí))過曲線SKIPIF1<0上一點SKIPIF1<0且與曲線在SKIPIF1<0點處的切線垂直的直線的方程為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2023春·陜西寶雞·高三統(tǒng)考)若過點SKIPIF1<0可作曲線SKIPIF1<0的兩條切線,則點SKIPIF1<0可以是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知直線SKIPIF1<0是曲線SKIPIF1<0與SKIPIF1<0的公切線,則SKIPIF1<0__________.6.(內(nèi)蒙古赤峰市、呼倫貝爾市等2022-2023學(xué)年高三上學(xué)期開學(xué)考試數(shù)學(xué)(文)試題)若直線SKIPIF1<0是曲線SKIPIF1<0與SKIPIF1<0的公切線,則SKIPIF1<0______.7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度首付分期購房借款合同范本規(guī)定6篇
- 年度線性低密度聚乙烯產(chǎn)業(yè)分析報告
- 年度吸污車產(chǎn)業(yè)分析報告
- 2025年度樓房建筑工程合同糾紛解決協(xié)議4篇
- 二零二四年養(yǎng)老社區(qū)三方物業(yè)服務(wù)委托合同文本3篇
- 二零二五年度船舶租賃船運輸協(xié)議合同3篇
- 二零二五年酒店客房家具更新?lián)Q代合同3篇
- 2025年度智能交通信號系統(tǒng)安裝與維護承包協(xié)議合同范本3篇
- 二零二五版教育培訓(xùn)機構(gòu)合同標(biāo)的課程開發(fā)與教學(xué)質(zhì)量承諾3篇
- 2025年度生物質(zhì)能發(fā)電項目合作協(xié)議合同范本
- GB/T 33688-2017選煤磁選設(shè)備工藝效果評定方法
- GB/T 304.3-2002關(guān)節(jié)軸承配合
- 漆畫漆藝 第三章
- CB/T 615-1995船底吸入格柵
- 光伏逆變器一課件
- 貨物供應(yīng)、運輸、包裝說明方案
- (完整版)英語高頻詞匯800詞
- 《基礎(chǔ)馬來語》課程標(biāo)準(zhǔn)(高職)
- IEC61850研討交流之四-服務(wù)影射
- 《兒科學(xué)》新生兒窒息課件
- 材料力學(xué)壓桿穩(wěn)定
評論
0/150
提交評論