![新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專(zhuān)題03 平面與平面所成角(二面角)(含探索性問(wèn)題)(典型題型歸類(lèi)訓(xùn)練)解析版_第1頁(yè)](http://file4.renrendoc.com/view8/M01/13/0A/wKhkGWa_2ciAAPcPAAGMoS26cvk403.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專(zhuān)題03 平面與平面所成角(二面角)(含探索性問(wèn)題)(典型題型歸類(lèi)訓(xùn)練)解析版_第2頁(yè)](http://file4.renrendoc.com/view8/M01/13/0A/wKhkGWa_2ciAAPcPAAGMoS26cvk4032.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專(zhuān)題03 平面與平面所成角(二面角)(含探索性問(wèn)題)(典型題型歸類(lèi)訓(xùn)練)解析版_第3頁(yè)](http://file4.renrendoc.com/view8/M01/13/0A/wKhkGWa_2ciAAPcPAAGMoS26cvk4033.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專(zhuān)題03 平面與平面所成角(二面角)(含探索性問(wèn)題)(典型題型歸類(lèi)訓(xùn)練)解析版_第4頁(yè)](http://file4.renrendoc.com/view8/M01/13/0A/wKhkGWa_2ciAAPcPAAGMoS26cvk4034.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專(zhuān)題03 平面與平面所成角(二面角)(含探索性問(wèn)題)(典型題型歸類(lèi)訓(xùn)練)解析版_第5頁(yè)](http://file4.renrendoc.com/view8/M01/13/0A/wKhkGWa_2ciAAPcPAAGMoS26cvk4035.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題03平面與平面所成角(二面角)(含探索性問(wèn)題)(典型題型歸類(lèi)訓(xùn)練)目錄TOC\o"1-2"\h\u一、必備秘籍 1二、典型題型 2題型一:求二面角 2題型二:已知二面角求參數(shù) 10題型三:求二面角最值(范圍) 18三、專(zhuān)項(xiàng)訓(xùn)練 24一、必備秘籍1、二面角的平面角定義:從二面角棱上任取一點(diǎn)SKIPIF1<0,在二面角的兩個(gè)半平面內(nèi)分別作棱的垂線SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0稱(chēng)為二面角的平面角.2、二面角的范圍:SKIPIF1<03、向量法求二面角平面角(1)如圖①,SKIPIF1<0,SKIPIF1<0是二面角SKIPIF1<0的兩個(gè)面內(nèi)與棱SKIPIF1<0垂直的直線,則二面角的大小SKIPIF1<0.(2)如圖②③,SKIPIF1<0,SKIPIF1<0分別是二面角SKIPIF1<0的兩個(gè)半平面SKIPIF1<0的法向量,則二面角的大小SKIPIF1<0滿(mǎn)足:SKIPIF1<0;SKIPIF1<0(特別說(shuō)明,有些題目會(huì)提醒求銳二面角;有些題目沒(méi)有明顯提示,需考生自己看圖判定為銳二面角還是鈍二面角.)二、典型題型題型一:求二面角1.(22·23下·河南·模擬預(yù)測(cè))如圖,直四棱柱SKIPIF1<0的底面是正方形,SKIPIF1<0,E,F(xiàn)分別為BC,SKIPIF1<0的中點(diǎn).
(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的正弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)G,連接FG,因?yàn)镋,F(xiàn)分別為BC,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,且SKIPIF1<0,所以四邊形AEFG是平行四邊形,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)以D為坐標(biāo)原點(diǎn),DA為x軸,DC為y軸,SKIPIF1<0為z軸建立坐標(biāo)系,如圖所示,
設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,設(shè)二面角SKIPIF1<0的平面角為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0故二面角SKIPIF1<0的正弦值為SKIPIF1<0.2.(2023·江西南昌·模擬預(yù)測(cè))如圖,直三棱柱SKIPIF1<0的體積為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0.
(1)求SKIPIF1<0到平面SKIPIF1<0的距離;(2)設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,求二面角SKIPIF1<0的大?。敬鸢浮?1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由題意知:SKIPIF1<0;設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,即點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0;SKIPIF1<0三棱錐SKIPIF1<0為直三棱柱,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0則以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0正方向?yàn)镾KIPIF1<0軸的正方向,可建立如圖所示空間直角坐標(biāo)系,
由(1)知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,則二面角SKIPIF1<0的大小為SKIPIF1<0.3.(2023·浙江·模擬預(yù)測(cè))如圖,在矩形SKIPIF1<0中,SKIPIF1<0為邊SKIPIF1<0上的點(diǎn),且SKIPIF1<0.將SKIPIF1<0沿SKIPIF1<0翻折,使得點(diǎn)SKIPIF1<0到SKIPIF1<0,滿(mǎn)足平面SKIPIF1<0平面SKIPIF1<0,連接SKIPIF1<0.
(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的正弦值的大小.【答案】(1)證明見(jiàn)詳解(2)SKIPIF1<0【詳解】(1)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0與SKIPIF1<0是平面SKIPIF1<0內(nèi)的兩條相交直線,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0.(2)
如圖,作SKIPIF1<0,垂足為SKIPIF1<0,在SKIPIF1<0中,可得SKIPIF1<0,SKIPIF1<0,由(1),SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0軸,過(guò)點(diǎn)SKIPIF1<0垂直平面SKIPIF1<0為SKIPIF1<0軸,建立如圖所示的空間直角坐標(biāo)系,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以二面角SKIPIF1<0的正弦值為SKIPIF1<0.4.(2023·河北滄州·三模)如圖,該幾何體是由等高的半個(gè)圓柱和SKIPIF1<0個(gè)圓柱拼接而成.SKIPIF1<0在同一平面內(nèi),且SKIPIF1<0.
(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)如圖,連接SKIPIF1<0,因?yàn)樵搸缀误w是由等高的半個(gè)圓柱和SKIPIF1<0個(gè)圓柱拼接而成,
SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)如圖,以SKIPIF1<0為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,記直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),即SKIPIF1<0.設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0.因此平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0.5.(2023·海南省直轄縣級(jí)單位·三模)如圖所示,SKIPIF1<0為等邊三角形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0上一動(dòng)點(diǎn).
(1)若SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),證明:SKIPIF1<0.(2)若SKIPIF1<0,求二面角SKIPIF1<0的余弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0為線段SKIPIF1<0的中點(diǎn),且SKIPIF1<0為等邊三角形,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;(2)設(shè)SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,在平面SKIPIF1<0內(nèi),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,由(1)可得SKIPIF1<0兩兩垂直,分別以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所在直線為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸建立空間直角坐標(biāo)系,如圖所示,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,所以SKIPIF1<0,所以二面角SKIPIF1<0的余弦值為SKIPIF1<0.
題型二:已知二面角求參數(shù)1.(2023·四川南充·三模)如圖,在四棱臺(tái)SKIPIF1<0中,底面SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.
(1)證明:BDSKIPIF1<0CC1;(2)棱SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0,使得二面角SKIPIF1<0的余弦值為SKIPIF1<0若存在,求線段SKIPIF1<0的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)證明見(jiàn)解析(2)存在,SKIPIF1<0【詳解】(1)證明:如圖所示,連接SKIPIF1<0,因?yàn)镾KIPIF1<0為棱臺(tái),所以SKIPIF1<0四點(diǎn)共面,又因?yàn)樗倪呅蜸KIPIF1<0為菱形,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)解:取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)榈酌鍿KIPIF1<0是菱形,且SKIPIF1<0,所以SKIPIF1<0是正三角形,所以SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0為原點(diǎn),分別以SKIPIF1<0為SKIPIF1<0軸、SKIPIF1<0軸和SKIPIF1<0軸,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0假設(shè)點(diǎn)SKIPIF1<0存在,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,其中SKIPIF1<0,可得SKIPIF1<0
設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0.又由平面SKIPIF1<0的法向量為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0由于二面角SKIPIF1<0為銳角,則點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0故SKIPIF1<0上存在點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),二面角SKIPIF1<0的余弦值為SKIPIF1<0.
2.(2023·吉林長(zhǎng)春·一模)長(zhǎng)方形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn)(如圖1),將點(diǎn)SKIPIF1<0繞SKIPIF1<0旋轉(zhuǎn)至點(diǎn)SKIPIF1<0處,使平面SKIPIF1<0平面SKIPIF1<0(如圖2).
(1)求證:SKIPIF1<0;(2)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,當(dāng)二面角SKIPIF1<0大小為SKIPIF1<0時(shí),求四棱錐SKIPIF1<0的體積.【答案】(1)證明見(jiàn)詳解(2)SKIPIF1<0【詳解】(1)證明:在長(zhǎng)方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.(2)
如圖,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由題意可得SKIPIF1<0兩兩互相垂直,以SKIPIF1<0為坐標(biāo)原點(diǎn),以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為x,y,z軸建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍).即SKIPIF1<0為SKIPIF1<0的靠近SKIPIF1<0的三等分點(diǎn)時(shí),二面角SKIPIF1<0的平面角為SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,又四邊形SKIPIF1<0的面積為3,SKIPIF1<0四棱錐SKIPIF1<0的體積SKIPIF1<03.(2023·福建寧德·一模)如圖①在平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0折起,使平面SKIPIF1<0平面SKIPIF1<0,得到圖②所示幾何體.(1)若SKIPIF1<0為SKIPIF1<0的中點(diǎn),求四棱錐SKIPIF1<0的體積SKIPIF1<0;(2)在線段SKIPIF1<0上,是否存在一點(diǎn)SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0所成銳二面角的余弦值為SKIPIF1<0,如果存在,求出SKIPIF1<0的值,如果不存在,說(shuō)明理由.【答案】(1)SKIPIF1<0(2)存在,SKIPIF1<0的值為SKIPIF1<0【詳解】(1)由圖①知,SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.由圖②知,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三者兩兩垂直,以點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方向分別為SKIPIF1<0軸,SKIPIF1<0軸,SKIPIF1<0軸的正方向,建立空間直角坐標(biāo)系(如圖).則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以此時(shí)SKIPIF1<0的值為SKIPIF1<0.4.(2023·江西九江·一模)如圖,直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0翻折至SKIPIF1<0的位置,使得SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).
(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)SKIPIF1<0為線段SKIPIF1<0上一點(diǎn)(端點(diǎn)除外),若二面角SKIPIF1<0的余弦值為SKIPIF1<0,求線段SKIPIF1<0的長(zhǎng).【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)易知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0由直角梯形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0又SKIPIF1<0平面SKIPIF1<0,可得平面SKIPIF1<0平面SKIPIF1<0(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),可得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0故以SKIPIF1<0所在的直線分別為SKIPIF1<0軸,建立如圖空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍)即SKIPIF1<0為SKIPIF1<0的中點(diǎn),易知SKIPIF1<0,故線段SKIPIF1<0的長(zhǎng)為SKIPIF1<0.5.(2023·四川成都·模擬預(yù)測(cè))如圖,四棱錐SKIPIF1<0中,底面SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,側(cè)面SKIPIF1<0底面SKIPIF1<0,側(cè)面SKIPIF1<0底面SKIPIF1<0,點(diǎn)F是PB的中點(diǎn),動(dòng)點(diǎn)E在邊BC上移動(dòng),且SKIPIF1<0.
(1)證明:SKIPIF1<0垂直于底面SKIPIF1<0.(2)當(dāng)點(diǎn)E在BC邊上移動(dòng),使二面角SKIPIF1<0為SKIPIF1<0時(shí),求二面角SKIPIF1<0的余弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)因?yàn)閭?cè)面SKIPIF1<0底面SKIPIF1<0,側(cè)面SKIPIF1<0底面SKIPIF1<0,而底面SKIPIF1<0是矩形,故SKIPIF1<0,SKIPIF1<0底面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0;同理側(cè)面SKIPIF1<0底面SKIPIF1<0,側(cè)面SKIPIF1<0底面SKIPIF1<0,而底面SKIPIF1<0是矩形,故SKIPIF1<0,SKIPIF1<0底面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0底面SKIPIF1<0,故SKIPIF1<0垂直于底面SKIPIF1<0(2)由(1)知SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0底面SKIPIF1<0,故SKIPIF1<0,點(diǎn)F是PB的中點(diǎn),且SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0;又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0即為二面角SKIPIF1<0的平面角,即SKIPIF1<0;而SKIPIF1<0,以A為坐標(biāo)原點(diǎn),以SKIPIF1<0所在直線分別為SKIPIF1<0軸,建立空間直角坐標(biāo)系,
則SKIPIF1<0,故SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,由原圖可知二面角SKIPIF1<0為銳角,故二面角SKIPIF1<0的余弦值為SKIPIF1<0.題型三:求二面角最值(范圍)1.(23·24高二上·山東·階段練習(xí))如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的點(diǎn),點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的點(diǎn),且SKIPIF1<0.
(1)證明:直線SKIPIF1<0平面SKIPIF1<0:(2)求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值的取值范圍.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)如圖,連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,得到SKIPIF1<0,又易知,SKIPIF1<0且SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,得到SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,
(2)如圖建立空間直角坐標(biāo)系,因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則由SKIPIF1<0,得到SKIPIF1<0,取SKIPIF1<0,得到SKIPIF1<0,所以SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則由SKIPIF1<0,得到SKIPIF1<0,取SKIPIF1<0,得到SKIPIF1<0,所以SKIPIF1<0,設(shè)平面SKIPIF1<0與平面SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值的取值范圍為SKIPIF1<0.
2.(23·24高二上·四川遂寧·階段練習(xí))如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別在棱SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.
(1)證明:SKIPIF1<0四點(diǎn)共面(2)當(dāng)點(diǎn)SKIPIF1<0在棱SKIPIF1<0上運(yùn)動(dòng)時(shí)(包括端點(diǎn)),求平面SKIPIF1<0與平面SKIPIF1<0夾角余弦值的的取值范圍.【答案】(1)證明見(jiàn)解析.(2)SKIPIF1<0.【詳解】(1)分別以SKIPIF1<0為SKIPIF1<0軸建立空間直角坐標(biāo)系,如圖,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0共面,即SKIPIF1<0四點(diǎn)共面;
(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量是SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量是SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,∴平面SKIPIF1<0與平面SKIPIF1<0夾角余弦值的的取值范圍是SKIPIF1<0.3.(23·24高二上·湖北恩施·階段練習(xí))如圖(1),在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),將SKIPIF1<0沿直線AE折起,使得SKIPIF1<0,如圖(2).(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)已知點(diǎn)H在線段AB上移動(dòng),設(shè)平面ADE與平面DHC所成的角為SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)由題意證明如下,取線段AE的中點(diǎn)O,連接DO,OC,如圖.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由余弦定理得,SKIPIF1<0,∴SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面ABCE,SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面ABCE.(2)由題意及(1)得,建立空間直角坐標(biāo)系如下圖所示,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.易知平面ADE的一個(gè)法向量為SKIPIF1<0.設(shè)點(diǎn)H的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.設(shè)平面DHC的法向量為SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.∴SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.4.(23·24高二上·四川遂寧·階段練習(xí))如圖,在三棱柱SKIPIF1<0中,底面是邊長(zhǎng)為2的等邊三角形,在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0?SKIPIF1<0的中點(diǎn).
(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)SKIPIF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水資源管理服務(wù)行業(yè)智能化水資源開(kāi)發(fā)利用方案
- 2025年重慶貨運(yùn)從業(yè)資格證試題
- 2024年領(lǐng)軍高考物理一輪復(fù)習(xí)專(zhuān)題11.3機(jī)械能提高訓(xùn)練含解析
- 2024年新教材高中生物單元素養(yǎng)評(píng)價(jià)二含解析新人教版必修2
- 2024-2025學(xué)年高中歷史課下能力提升二十五工業(yè)革命時(shí)代的浪漫情懷含解析人民版必修3
- 湘師大版道德與法治九年級(jí)上冊(cè)5.2.2《公平正義促和諧》聽(tīng)課評(píng)課記錄
- 多人合伙經(jīng)營(yíng)合同范本
- 電子商務(wù)半年工作總結(jié)
- 委托出租鋪面協(xié)議
- 特種設(shè)備委托檢驗(yàn)檢測(cè)協(xié)議書(shū)范本
- 青島版科學(xué)(2017)六三制六年級(jí)下冊(cè)第2單元《生物與環(huán)境》全單元課件
- 2022-2023年人教版九年級(jí)物理上冊(cè)期末考試(真題)
- 關(guān)漢卿的生平與創(chuàng)作
- 一年級(jí)語(yǔ)文教材解讀分析ppt
- 編本八年級(jí)下全冊(cè)古詩(shī)詞原文及翻譯
- 公共政策學(xué)政策分析的理論方法和技術(shù)課件
- 裝載機(jī)教材課件
- 萬(wàn)人計(jì)劃藍(lán)色簡(jiǎn)約萬(wàn)人計(jì)劃青年拔尖人才答辯PPT模板
- 統(tǒng)編高中《思想政治》教材編寫(xiě)理念和內(nèi)容介紹
- 2022年普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)試卷 新高考Ⅰ卷(含解析)
- (完整版)中心醫(yī)院心血管學(xué)科的專(zhuān)科建設(shè)與發(fā)展規(guī)劃
評(píng)論
0/150
提交評(píng)論