2022年湖北省仙桃、天門、潛江三市高三第二次模擬考試數(shù)學試卷含解析_第1頁
2022年湖北省仙桃、天門、潛江三市高三第二次模擬考試數(shù)學試卷含解析_第2頁
2022年湖北省仙桃、天門、潛江三市高三第二次模擬考試數(shù)學試卷含解析_第3頁
2022年湖北省仙桃、天門、潛江三市高三第二次模擬考試數(shù)學試卷含解析_第4頁
2022年湖北省仙桃、天門、潛江三市高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)()的圖像可以是()A. B.C. D.2.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點,則該點落在區(qū)域的概率為()A. B. C. D.3.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.4.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?5.網(wǎng)絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月6.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差7.若復數(shù)滿足,則()A. B. C.2 D.8.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關于點成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關于原點成中心對稱9.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.10.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉一周后形成的幾何體的表面積為()A. B. C. D.11.若復數(shù)滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.設為非零實數(shù),且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為數(shù)列的前項和,若,,且,,則________.14.若正實數(shù)x,y,滿足x+2y=5,則x215.在的二項展開式中,x的系數(shù)為________.(用數(shù)值作答)16.已知數(shù)列滿足,,若,則數(shù)列的前n項和______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.18.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.19.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.21.(12分)定義:若數(shù)列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.22.(10分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù),可排除,然后采用導數(shù),判斷原函數(shù)的單調(diào)性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎題.2.C【解析】

據(jù)題意可知,是與面積有關的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區(qū)域的面積.3.C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.4.B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.5.C【解析】

根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應用,基礎題.6.D【解析】

ABD可通過統(tǒng)計圖直接分析得出結論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關鍵是能通過所給統(tǒng)計圖,分析出對應的信息,對學生分析問題的能力有一定要求.7.D【解析】

把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法.8.B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關鍵,著重考查了數(shù)形結合思想,以及運算與求解能力,屬于基礎題.9.D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關于1,0中心對稱是解題的關鍵.10.B【解析】

根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.11.D【解析】

利用復數(shù)模的計算、復數(shù)的除法化簡復數(shù),再根據(jù)復數(shù)的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數(shù)模的計算、復數(shù)的除法、復數(shù)的幾何意義,考查運算求解能力,屬于基礎題.12.C【解析】

取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質(zhì),意在考查學生對于不等式性質(zhì)的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以.14.8【解析】

分析:將題中的式子進行整理,將x+1當做一個整體,之后應用已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結果.詳解:x2-3x+1+2點睛:該題屬于應用基本不等式求最值的問題,解決該題的關鍵是需要對式子進行化簡,轉化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結果.15.-40【解析】

由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數(shù)【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數(shù)為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.16.【解析】

,求得的通項,進而求得,得通項公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【點睛】本題考查求等差數(shù)列數(shù)列通項,等比數(shù)列求和,熟記等差等比性質(zhì),熟練運算是關鍵,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對值不等式的性質(zhì)可得,不等式對任意實數(shù)恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當時,即,①當時,得,所以;②當時,得,即,所以;③當時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.18.(1)見解析;(2)見解析【解析】

(1)根據(jù),分別是,的中點,即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點,證出,再根據(jù)平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時要認真審題,注意空間思維能力的培養(yǎng),中檔題.19.證明見解析;2.【解析】

利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點,使得,此時.【點睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎知識;考查空間想象能力、運算求解能力、推理論證能力和創(chuàng)新意識;考查化歸與轉化、函數(shù)與方程等數(shù)學思想,屬于難題.20.(1)的極坐標方程為,普通方程為;(2)【解析】

(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據(jù),可求得的范圍;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數(shù)方程與普通方程,極坐標方程與平面直角坐標方程之間的轉化,求解幾何量的取值范圍,關鍵在于明確極坐標系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.21.(1)16;(2)115.【解析】

(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計算公式可得,當時根據(jù)題意有,共個;當時求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對即可.【詳解】解:(1)三個數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數(shù)原理得:為“﹣數(shù)列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設,則由于為正整

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論