新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 指數(shù)函數(shù)與對數(shù)函數(shù)(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 指數(shù)函數(shù)與對數(shù)函數(shù)(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 指數(shù)函數(shù)與對數(shù)函數(shù)(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 指數(shù)函數(shù)與對數(shù)函數(shù)(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 指數(shù)函數(shù)與對數(shù)函數(shù)(含解析)_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第四章指數(shù)函數(shù)與對數(shù)函數(shù)知識點(diǎn)一、指數(shù)及指數(shù)冪的運(yùn)算1.根式的概念SKIPIF1<0的SKIPIF1<0次方根的定義:一般地,如果SKIPIF1<0,那么SKIPIF1<0叫做SKIPIF1<0的SKIPIF1<0次方根,其中SKIPIF1<0當(dāng)SKIPIF1<0為奇數(shù)時,正數(shù)的SKIPIF1<0次方根為正數(shù),負(fù)數(shù)的SKIPIF1<0次方根是負(fù)數(shù),表示為SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時,正數(shù)的SKIPIF1<0次方根有兩個,這兩個數(shù)互為相反數(shù)可以表示為SKIPIF1<0.負(fù)數(shù)沒有偶次方根,0的任何次方根都是0.式子SKIPIF1<0叫做根式,SKIPIF1<0叫做根指數(shù),SKIPIF1<0叫做被開方數(shù).2.n次方根的性質(zhì):(1)當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0(2)SKIPIF1<03.分?jǐn)?shù)指數(shù)冪的意義:SKIPIF1<0;SKIPIF1<0要點(diǎn)詮釋:0的正分?jǐn)?shù)指數(shù)冪等于0,負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.4.有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):SKIPIF1<0(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0知識點(diǎn)二、指數(shù)函數(shù)及其性質(zhì)1.指數(shù)函數(shù)概念一般地,函數(shù)SKIPIF1<0叫做指數(shù)函數(shù),其中SKIPIF1<0是自變量,函數(shù)的定義域?yàn)镾KIPIF1<0.2.指數(shù)函數(shù)函數(shù)性質(zhì):函數(shù)名稱指數(shù)函數(shù)定義0101函數(shù)SKIPIF1<0且SKIPIF1<0叫做指數(shù)函數(shù)0101圖象SKIPIF1<0SKIPIF1<0定義域SKIPIF1<0值域SKIPIF1<0過定點(diǎn)圖象過定點(diǎn)SKIPIF1<0,即當(dāng)SKIPIF1<0時,SKIPIF1<0.奇偶性非奇非偶單調(diào)性在SKIPIF1<0上是增函數(shù)在SKIPIF1<0上是減函數(shù)函數(shù)值的變化情況SKIPIF1<0SKIPIF1<0SKIPIF1<0變化對圖象的影響在第一象限內(nèi),從逆時針方向看圖象,SKIPIF1<0逐漸增大;在第二象限內(nèi),從逆時針方向看圖象,SKIPIF1<0逐漸減小.知識點(diǎn)三:對數(shù)與對數(shù)運(yùn)算1.對數(shù)的定義(1)若SKIPIF1<0,則SKIPIF1<0叫做以SKIPIF1<0為底SKIPIF1<0的對數(shù),記作SKIPIF1<0,其中SKIPIF1<0叫做底數(shù),SKIPIF1<0叫做真數(shù).(2)負(fù)數(shù)和零沒有對數(shù).(3)對數(shù)式與指數(shù)式的互化:SKIPIF1<0.2.幾個重要的對數(shù)恒等式SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.3.常用對數(shù)與自然對數(shù)常用對數(shù):SKIPIF1<0,即SKIPIF1<0;自然對數(shù):SKIPIF1<0,即SKIPIF1<0(其中SKIPIF1<0…).4.對數(shù)的運(yùn)算性質(zhì)如果SKIPIF1<0,那么①加法:SKIPIF1<0②減法:SKIPIF1<0③數(shù)乘:SKIPIF1<0④SKIPIF1<0⑤SKIPIF1<0⑥換底公式:SKIPIF1<0知識點(diǎn)四:對數(shù)函數(shù)及其性質(zhì)1.對數(shù)函數(shù)定義一般地,函數(shù)SKIPIF1<0叫做對數(shù)函數(shù),其中SKIPIF1<0是自變量,函數(shù)的定義域SKIPIF1<0.2.對數(shù)函數(shù)性質(zhì):函數(shù)名稱對數(shù)函數(shù)定義函數(shù)SKIPIF1<0且SKIPIF1<0叫做對數(shù)函數(shù)圖象SKIPIF1<0SKIPIF1<0001001定義域SKIPIF1<0值域SKIPIF1<0過定點(diǎn)圖象過定點(diǎn)SKIPIF1<0,即當(dāng)SKIPIF1<0時,SKIPIF1<0.奇偶性非奇非偶單調(diào)性在SKIPIF1<0上是增函數(shù)在SKIPIF1<0上是減函數(shù)函數(shù)值的變化情況SKIPIF1<0SKIPIF1<0SKIPIF1<0變化對圖象的影響在第一象限內(nèi),從順時針方向看圖象,SKIPIF1<0逐漸增大;在第四象限內(nèi),從順時針方向看圖象,SKIPIF1<0逐漸減小.知識點(diǎn)五:函數(shù)、方程的有關(guān)問題1.函數(shù)零點(diǎn)的判定(1)利用函數(shù)零點(diǎn)存在性的判定定理如果函數(shù)SKIPIF1<0在一個區(qū)間SKIPIF1<0上的圖象不間斷,并且在它的兩個端點(diǎn)處的函數(shù)值異號,即SKIPIF1<0,則這個函數(shù)在這個區(qū)間上,至少有一個零點(diǎn),即存在一點(diǎn)SKIPIF1<0,使SKIPIF1<0,這個SKIPIF1<0也就是方程SKIPIF1<0的根.要點(diǎn)詮釋:①滿足上述條件,我們只能判定區(qū)間內(nèi)有零點(diǎn),但不能確定有幾個.若函數(shù)在區(qū)間內(nèi)單調(diào),則只有一個;若不單調(diào),則個數(shù)不確定.②若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有SKIPIF1<0,SKIPIF1<0在SKIPIF1<0內(nèi)也可能有零點(diǎn),例如SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0在區(qū)間SKIPIF1<0上就是這樣的.故SKIPIF1<0在SKIPIF1<0內(nèi)有零點(diǎn),不一定有SKIPIF1<0.③若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象不是連續(xù)不斷的曲線,SKIPIF1<0在SKIPIF1<0內(nèi)也可能是有零點(diǎn),例如函數(shù)SKIPIF1<0在SKIPIF1<0上就是這樣的.(2)利用方程求解法求函數(shù)的零點(diǎn)時,先考慮解方程SKIPIF1<0,方程SKIPIF1<0無實(shí)根則函數(shù)無零點(diǎn),方程SKIPIF1<0有實(shí)根則函數(shù)有零點(diǎn).(3)利用數(shù)形結(jié)合法函數(shù)SKIPIF1<0的零點(diǎn)就是方程SKIPIF1<0的實(shí)數(shù)根,也就是函數(shù)SKIPIF1<0的圖象與SKIPIF1<0的圖象交點(diǎn)的橫坐標(biāo).2.用二分法求函數(shù)零點(diǎn)的一般步驟:已知函數(shù)SKIPIF1<0定義在區(qū)間D上,求它在D上的一個零點(diǎn)x0的近似值x,使它滿足給定的精確度.第一步:在D內(nèi)取一個閉區(qū)間SKIPIF1<0,使SKIPIF1<0與SKIPIF1<0異號,即SKIPIF1<0,零點(diǎn)位于區(qū)間SKIPIF1<0中.第二步:取區(qū)間SKIPIF1<0的中點(diǎn),則此中點(diǎn)對應(yīng)的坐標(biāo)為SKIPIF1<0.計算SKIPIF1<0和SKIPIF1<0,并判斷:①如果SKIPIF1<0,則SKIPIF1<0就是SKIPIF1<0的零點(diǎn),計算終止;②如果SKIPIF1<0,則零點(diǎn)位于區(qū)間SKIPIF1<0中,令SKIPIF1<0;③如果SKIPIF1<0,則零點(diǎn)位于區(qū)間SKIPIF1<0中,令SKIPIF1<0第三步:取區(qū)間SKIPIF1<0的中點(diǎn),則此中點(diǎn)對應(yīng)的坐標(biāo)為SKIPIF1<0.計算SKIPIF1<0和SKIPIF1<0,并判斷:①如果SKIPIF1<0,則SKIPIF1<0就是SKIPIF1<0的零點(diǎn),計算終止;②如果SKIPIF1<0,則零點(diǎn)位于區(qū)間SKIPIF1<0中,令SKIPIF1<0;③如果SKIPIF1<0,則零點(diǎn)位于區(qū)間SKIPIF1<0中,令SKIPIF1<0;……繼續(xù)實(shí)施上述步驟,直到區(qū)間SKIPIF1<0,函數(shù)的零點(diǎn)總位于區(qū)間SKIPIF1<0上,當(dāng)SKIPIF1<0和SKIPIF1<0按照給定的精確度所取的近似值相同時,這個相同的近似值就是函數(shù)SKIPIF1<0的近似零點(diǎn),計算終止.這時函數(shù)SKIPIF1<0的近似零點(diǎn)滿足給定的精確度.要點(diǎn)詮釋:(1)第一步中要使:①區(qū)間長度盡量小;②SKIPIF1<0、SKIPIF1<0的值比較容易計算且SKIPIF1<0.(2)根據(jù)函數(shù)的零點(diǎn)與相應(yīng)方程的根的關(guān)系,求函數(shù)的零點(diǎn)和求相應(yīng)方程的根式等價的.對于求方程SKIPIF1<0的根,可以構(gòu)造函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)即為方程SKIPIF1<0的根.知識點(diǎn)六:函數(shù)的實(shí)際應(yīng)用求解函數(shù)應(yīng)用題時一般按以下幾步進(jìn)行:第一步:審題弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,初步選擇模型.第二步:建模在細(xì)心閱讀與深入理解題意的基礎(chǔ)上,引進(jìn)數(shù)學(xué)符號,將問題的非數(shù)學(xué)語言合理轉(zhuǎn)化為數(shù)學(xué)語言,然后根據(jù)題意,列出數(shù)量關(guān)系,建立函數(shù)模型.這時,要注意函數(shù)的定義域應(yīng)符合實(shí)際問題的要求.第三步:求模運(yùn)用數(shù)學(xué)方法及函數(shù)知識進(jìn)行推理、運(yùn)算,求解數(shù)學(xué)模型,得出結(jié)果.第四步:還原把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成實(shí)際問題作出解答,對于解出的結(jié)果要代入原問題中進(jìn)行檢驗(yàn)、評判,使其符合實(shí)際背景.上述四步可概括為以下流程:實(shí)際問題(文字語言)SKIPIF1<0數(shù)學(xué)問題(數(shù)量關(guān)系與函數(shù)模型)SKIPIF1<0建模(數(shù)學(xué)語言)SKIPIF1<0求模(求解數(shù)學(xué)問題)SKIPIF1<0反饋(還原成實(shí)際問題的解答).類型一:指數(shù)、對數(shù)運(yùn)算例1.計算(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0【思路點(diǎn)撥】運(yùn)算時盡量把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪,而小數(shù)也要化為分?jǐn)?shù)為好.【答案】(1)SKIPIF1<0;(2)1;(3)3;(4)14。【解析】(1)原式=SKIPIF1<0;(2)原式=SKIPIF1<0=SKIPIF1<0=1-SKIPIF1<0+SKIPIF1<0=1(3)原式=SKIPIF1<0=SKIPIF1<0=2+SKIPIF1<0=3;(4)令SKIPIF1<0SKIPIF1<0,兩邊取常用對數(shù)得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0即SKIPIF1<0=14?!究偨Y(jié)升華】這是一組很基本的對數(shù)運(yùn)算的練習(xí)題,雖然在考試中這些運(yùn)算要求并不高,但是數(shù)式運(yùn)算是學(xué)習(xí)數(shù)學(xué)的基本功,通過這樣的運(yùn)算練習(xí)熟練掌握運(yùn)算公式、法則,以及學(xué)習(xí)數(shù)式變換的各種技巧.類型二:指數(shù)函數(shù)、對數(shù)函數(shù)的圖象與性質(zhì)例2.已知函數(shù)SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0的取值范圍是().A.SKIPIF1<0B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0【答案】A【解析】依題意SKIPIF1<0或SKIPIF1<0即SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,故選A。例3.設(shè)函數(shù)SKIPIF1<0若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是().A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】解法一:①若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0。②若SKIPIF1<0則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0由①②可知SKIPIF1<0解法二:特殊值驗(yàn)證令SKIPIF1<0SKIPIF1<0,滿足SKIPIF1<0,故排除A、D。令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不滿足SKIPIF1<0,故排除B?!究偨Y(jié)升華】本題考查了分段函數(shù)的性質(zhì)、分類思想的應(yīng)用.例4.函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是()A.(3,+∞)B.(-∞,3)C.(4,+∞)D.(-∞,2)【思路點(diǎn)撥】這是一個內(nèi)層函數(shù)是二次函數(shù),外層函數(shù)是對數(shù)函數(shù)的復(fù)合函數(shù),其單調(diào)性由這兩個函數(shù)的單調(diào)性共同決定,即“同增異減”。【答案】D【解析】函數(shù)SKIPIF1<0是由SKIPIF1<0復(fù)合而成的,SKIPIF1<0是減函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,由對數(shù)函數(shù)的真數(shù)必須大于零,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以原函數(shù)的單調(diào)遞增區(qū)間是SKIPIF1<0,故選D。例5.已知函數(shù)y=(SKIPIF1<0)|x+1|。作出圖象;由圖象指出其單調(diào)區(qū)間;由圖象指出當(dāng)x取什么值時函數(shù)有最值。【思路點(diǎn)撥】思路一:化去絕對值符號SKIPIF1<0將函數(shù)寫成分段函數(shù)的形式SKIPIF1<0作圖象SKIPIF1<0寫出單調(diào)區(qū)間SKIPIF1<0寫出x的取值;思路二:利用函數(shù)圖象的變換作函數(shù)圖象SKIPIF1<0寫出單調(diào)區(qū)間SKIPIF1<0寫出x的取值。【解析】(1)圖象作法一:由已知可得SKIPIF1<0其圖象由兩部分組成:一部分是:SKIPIF1<0另一部分是:SKIPIF1<0圖象如圖:圖象作法二:先作函數(shù)SKIPIF1<0的圖象,再作函數(shù)SKIPIF1<0圖象。作法:將函數(shù)SKIPIF1<0圖象在y軸左側(cè)去掉,保留右側(cè),再把右側(cè)沿y軸翻折到左側(cè)得到函數(shù)SKIPIF1<0圖象(上圖中虛線),再將函數(shù)SKIPIF1<0圖象向左平移1個單位得到函數(shù)SKIPIF1<0圖象。(2)由圖象知函數(shù)在SKIPIF1<0上是增函數(shù),在SKIPIF1<0上是減函數(shù)。(3)由圖象知當(dāng)SKIPIF1<0時,函數(shù)有最大值1,無最小值。例6.已知f(x)=loga(ax-1)(a>0,a≠1)(1)求f(x)的定義域;(2)討論函數(shù)f(x)的單調(diào)性.【思路點(diǎn)撥】(1)本題求f(x)的定義域,但由于在條件中已知函數(shù)的解析式,所以,在求解方法上,可以考慮函數(shù)的真數(shù)大于零,解不等式.(2)本題求f(x)的單調(diào)性,但由于在條件中已知函數(shù)為復(fù)合函數(shù),所以在解題方法上,可用復(fù)合函數(shù)求其單調(diào)性.【解析】(1)使f(x)=loga(ax-1)有意義,則ax-1>0,即ax>1,當(dāng)a>1時,x>0;當(dāng)0<a<1時,x<0;∴當(dāng)a>1時,函數(shù)的定義域?yàn)閧x|x>0};當(dāng)0<a<1時,函數(shù)的定義域?yàn)閧x|x<0}.(2)當(dāng)a>1時,設(shè)0<x1<x2,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴f(x1)<f(x2),∴當(dāng)a>1時,函數(shù)f(x)在(0,+∞)上為增函數(shù);當(dāng)0<a<1時,設(shè)x1<x2<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴f(x1)<f(x2),∴當(dāng)0<a<1時,函數(shù)f(x)在(-∞,0)上為增函數(shù);綜上可知:函數(shù)f(x)=loga(ax-1)在其定義域上為增函數(shù).方法提示:利用復(fù)合函數(shù)(只限由兩個函數(shù)復(fù)合而成的)判斷函數(shù)單調(diào)性的方法找出已知函數(shù)是由哪兩個函數(shù)復(fù)合而成的;當(dāng)外函數(shù)為對數(shù)函數(shù)時,找出內(nèi)函數(shù)的定義域;分別求出兩函數(shù)的單調(diào)區(qū)間;按照“同增異減”確定函數(shù)的單調(diào)區(qū)間;研究函數(shù)的單調(diào)區(qū)間一定要在函數(shù)的定義域上進(jìn)行。類型三:關(guān)于函數(shù)的零點(diǎn)與方程根的關(guān)系問題例7.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是()A.若SKIPIF1<0,不存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0;B.若SKIPIF1<0,存在且只存在一個實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0;C.若SKIPIF1<0,有可能存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0;D.若SKIPIF1<0,有可能不存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0.【答案】C【解析】對于A選項:可能存在;對于B選項:必存在但不一定唯一例8.求函數(shù)SKIPIF1<0零點(diǎn)的個數(shù).【思路點(diǎn)撥】此題考查函數(shù)零點(diǎn)個數(shù)問題,方法一:數(shù)形結(jié)合法,注意到函數(shù)SKIPIF1<0的圖像不易作,舍之;方法二:轉(zhuǎn)化為相應(yīng)方程的解的個數(shù)問題.而方程SKIPIF1<0不易解,舍之.若將方程SKIPIF1<0變形為:SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0與SKIPIF1<0,方程SKIPIF1<0的根即為方程組SKIPIF1<0的解,函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)即為函數(shù)SKIPIF1<0與SKIPIF1<0圖像的交點(diǎn)的個數(shù).【答案】0【解析】函數(shù)SKIPIF1<0與SKIPIF1<0圖像如圖所示:由此易知,函數(shù)SKIPIF1<0與SKIPIF1<0的圖像交點(diǎn)個數(shù)為0,即得:函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為0.【總結(jié)升華】函數(shù)SKIPIF1<0零點(diǎn)個數(shù)的求法之一是:數(shù)形結(jié)合法,將方程SKIPIF1<0變形為:SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0與SKIPIF1<0,這兩個函數(shù)的交點(diǎn)個數(shù)即為函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù).這種方法數(shù)形結(jié)合,直觀性強(qiáng).例9.SKIPIF1<0與SKIPIF1<0分別是實(shí)系數(shù)一元二次方程SKIPIF1<0和SKIPIF1<0的一個根,且SKIPIF1<0,SKIPIF1<0.求證:方程SKIPIF1<0有且僅有一根介于SKIPIF1<0與SKIPIF1<0之間.證明:令SKIPIF1<0SKIPIF1<0SKIPIF1<0與SKIPIF1<0分別是實(shí)系數(shù)一元二次方程SKIPIF1<0和SKIPIF1<0的一個根,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0方程SKIPIF1<0有且僅有一根介于SKIPIF1<0與SKIPIF1<0之間【總結(jié)升華】這是最基本的題型,所用的方法也是基本方法:只要判斷區(qū)間[a,b]的端點(diǎn)值的乘積是否滿足SKIPIF1<0,還要看函數(shù)SKIPIF1<0的圖象在[a,b]上是否是連續(xù)曲線即可.解答這類判斷函數(shù)零點(diǎn)的大致區(qū)間的選擇題,只需用函數(shù)零點(diǎn)的存在性定理依次檢驗(yàn)所提供的區(qū)間,即可得到答案.例10.借助計算器或計算機(jī)用二分法求方程SKIPIF1<0的一個近似解.(精確到0.01)【思路點(diǎn)撥】利用二分法求方程近似解的實(shí)質(zhì)為求相應(yīng)函數(shù)的近似零點(diǎn),本題轉(zhuǎn)化為求函數(shù)SKIPIF1<0的近似零點(diǎn).注意到SKIPIF1<0,則方程SKIPIF1<0在[-l,0]內(nèi)有實(shí)根,再用二分法求近似解.【解析】考查函數(shù)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以方程SKIPIF1<0在[-l,9]內(nèi)有實(shí)數(shù)解.如此,得到方程SKIPIF1<0的實(shí)數(shù)解所在區(qū)間的表:1左端點(diǎn)右端點(diǎn)第1次-10第2次-10.5第3次-0.75-0.5第4次-0.75-0.625第5次-0.6875-0.625第6次-0.6875-0.65625第7次-0.6875-0.671875第8次-0.6875-0.6796875第9次-0.6875-0.68359735第10次-0.6875-0.685546875至此,可以看出,區(qū)間[-0.6875,-0.685

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論