版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年福建省三明市三明第一中學高三3月調考數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示的“數字塔”有以下規(guī)律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.2.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.3.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β4.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件5.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且6.洛書,古稱龜書,是陰陽五行術數之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數,四角黑點為陰數.如圖,若從四個陰數和五個陽數中分別隨機選取1個數,則其和等于11的概率是().A. B. C. D.7.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種8.已知,,,則()A. B. C. D.9.若復數(為虛數單位),則的共軛復數的模為()A. B.4 C.2 D.10.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.11.已知,則的大小關系為()A. B. C. D.12.已知函數,,且,則()A.3 B.3或7 C.5 D.5或8二、填空題:本題共4小題,每小題5分,共20分。13.設實數,若函數的最大值為,則實數的最大值為______.14.已知集合,,則_________.15.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數據的標準差為_______.16.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.19.(12分)已知函數.(1)求函數的零點;(2)設函數的圖象與函數的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數x恒成立,求k的取值范圍.20.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.21.(12分)已知曲線,直線:(為參數).(I)寫出曲線的參數方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.22.(10分)已知函數(其中是自然對數的底數)(1)若在R上單調遞增,求正數a的取值范圍;(2)若f(x)在處導數相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發(fā)現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題2.D【解析】
連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.3.B【解析】
根據線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據面面垂直的判定定理,判斷C選項的正確性.根據面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.4.B【解析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題5.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.6.A【解析】
基本事件總數,利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數和五個陽數中分別隨機選取1個數,基本事件總數,其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.7.B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B本小題主要考查簡答排列組合的計算,屬于基礎題.8.B【解析】
利用指數函數和對數函數的單調性,將數據和做對比,即可判斷.【詳解】由于,,故.故選:B.本題考查利用指數函數和對數函數的單調性比較大小,屬基礎題.9.D【解析】
由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算模.【詳解】,.故選:D.本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題.10.C【解析】
命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.11.A【解析】
根據指數函數的單調性,可得,再利用對數函數的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.本題考查利用函數性質比較大小,注意與特殊數的對比,屬于基礎題..12.B【解析】
根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.14.【解析】
根據交集的定義即可寫出答案。【詳解】,,故填本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎題。15.【解析】
先求出這組數據的平均數,再求出這組數據的方差,由此能求出該組數據的標準差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數為:,該組數據的方差為:,該組數據的標準差為1.故答案為:1.本題考查一組數據據的標準差的求法,考查平均數、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.16.【解析】
令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.本題考查導數在函數當中的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)推導出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標原點,建立如圖所示空間坐標系,設,利用空間向量法表示出二面角的余弦值,當余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標原點,建立如圖所示空間坐標系,則,設,則平面的一個法向量為設平面的一個法向量為則,即,令,如圖二面角的平面角為銳角,設二面角為,則,時取得最大值,最大值為,則最小值為本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.18.(1);(2)1.【解析】
(1)利用參數方程、普通方程、極坐標方程間的互化公式即可;(2),,由(1)通過計算得到,即最大值為1.【詳解】(1)將曲線C的參數方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C相交的兩點中,必有一個為原點O,不妨設O與A重合,即.(2)不妨設,,則面積為當,即取時,.本題考查參數方程、普通方程、極坐標方程間的互化,三角形面積的最值問題,是一道容易題.19.(1)x=1(2)證明見解析(3)【解析】
(1)令,根據導函數確定函數的單調區(qū)間,求出極小值,進而求解;(2)轉化思想,要證,即證,即證,構造函數進而求證;(3)不等式對一切正實數恒成立,,設,分類討論進而求解.【詳解】解:(1)令,所以,當時,,在上單調遞增;當時,,在單調遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數恒成立,,設,,記,△,①當△時,即時,恒成立,故單調遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設的兩個不等實根分別為,,又,于是,故當時,,從而在單調遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.(1)考查函數求導,根據導函數確定函數的單調性,零點;(2)考查轉化思想,構造函數求極值;(3)考查分類討論思想,函數的單調性,函數的求導;屬于難題.20.(1)見證明;(2)【解析】
(1)根據面面垂直的性質得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設,利用椎體的體積公式求得,利用導數研究函數的單調性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因為,平面平面,平面平面,平面,所以平面,因為平面,所以.因為,所以,所以,因為,所以平面.(2)解:設,則,四面體的體積.,當時,,單調遞增;當時,,單調遞減.故當時,四面體的體積取得最大值.以為坐標原點,建立空間直角坐標系,則,,,,.設平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.該題考查的是有關立體幾何的問題,涉及到的知識點有面面垂直的性質,線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導數求解體積的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度創(chuàng)新型二零二五年度家庭財產分割離婚協議書范本3篇
- 2024杉木木材加工廢棄物回收利用合同3篇
- 2024年輻射自動觀測儀項目資金申請報告
- 2024年許昌協議離婚所需手續(xù)及證件準備指南合同6篇
- 2025年中國黃花倒水蓮行業(yè)競爭格局及投資價值分析報告目錄
- 2024年物流園區(qū)場地租賃與物流教育培訓合同3篇
- 2025年中國剪刀電商市場深度調查評估及投資方向研究報告
- 二零二五年度O2O醫(yī)療健康服務平臺合同范本2篇
- 2024年度上市公司試用員工勞動合同范本3篇
- 2025年度建筑消防設施驗收合同補充協議范本3篇
- 美國制造業(yè)經濟2024年度報告-2024-12-宏觀大勢
- 小區(qū)充電樁安全協議書范本(2篇)
- 2024年安徽省公務員錄用考試《行測》真題及答案解析
- 車間班長年度述職報告
- 2024-2025學年高三年級上冊10月月考 生物試題
- 研究生年終總結研一
- 醫(yī)美行業(yè)股權合作合同
- 絲綢之路上的民族學習通超星期末考試答案章節(jié)答案2024年
- 無人機操作教案
- 鐵路基礎知識題庫單選題100道及答案解析
- 口腔正畸科普課件
評論
0/150
提交評論