![重慶市南川中學(xué)2025屆高三年級(jí)第二學(xué)期期末檢測(cè)試題聯(lián)考數(shù)學(xué)試題試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M09/20/38/wKhkGWbD40iAGHdGAAHFcE20jyE852.jpg)
![重慶市南川中學(xué)2025屆高三年級(jí)第二學(xué)期期末檢測(cè)試題聯(lián)考數(shù)學(xué)試題試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M09/20/38/wKhkGWbD40iAGHdGAAHFcE20jyE8522.jpg)
![重慶市南川中學(xué)2025屆高三年級(jí)第二學(xué)期期末檢測(cè)試題聯(lián)考數(shù)學(xué)試題試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M09/20/38/wKhkGWbD40iAGHdGAAHFcE20jyE8523.jpg)
![重慶市南川中學(xué)2025屆高三年級(jí)第二學(xué)期期末檢測(cè)試題聯(lián)考數(shù)學(xué)試題試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M09/20/38/wKhkGWbD40iAGHdGAAHFcE20jyE8524.jpg)
![重慶市南川中學(xué)2025屆高三年級(jí)第二學(xué)期期末檢測(cè)試題聯(lián)考數(shù)學(xué)試題試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M09/20/38/wKhkGWbD40iAGHdGAAHFcE20jyE8525.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市南川中學(xué)2025屆高三年級(jí)第二學(xué)期期末檢測(cè)試題聯(lián)考數(shù)學(xué)試題試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,雙曲線(xiàn)的左,右焦點(diǎn)分別是直線(xiàn)與雙曲線(xiàn)的兩條漸近線(xiàn)分別相交于兩點(diǎn).若則雙曲線(xiàn)的離心率為()A. B.C. D.2.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.3.過(guò)橢圓的左焦點(diǎn)的直線(xiàn)過(guò)的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.4.已知直線(xiàn):與圓:交于,兩點(diǎn),與平行的直線(xiàn)與圓交于,兩點(diǎn),且與的面積相等,給出下列直線(xiàn):①,②,③,④.其中滿(mǎn)足條件的所有直線(xiàn)的編號(hào)有()A.①② B.①④ C.②③ D.①②④5.自2019年12月以來(lái),在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級(jí)政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級(jí)要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個(gè)不同的住戶(hù)屬在鄂返鄉(xiāng)住戶(hù),負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個(gè)住戶(hù)家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種6.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.7.如圖,已知直線(xiàn)與拋物線(xiàn)相交于A(yíng),B兩點(diǎn),且A、B兩點(diǎn)在拋物線(xiàn)準(zhǔn)線(xiàn)上的投影分別是M,N,若,則的值是()A. B. C. D.8.斜率為1的直線(xiàn)l與橢圓相交于A(yíng)、B兩點(diǎn),則的最大值為A.2 B. C. D.9.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.10.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示月日至月日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù)C.月日至月日新增確診人數(shù)波動(dòng)最大D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值11.由曲線(xiàn)圍成的封閉圖形的面積為()A. B. C. D.12.?dāng)?shù)列{an},滿(mǎn)足對(duì)任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項(xiàng)的和S100=()A.132 B.299 C.68 D.99二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線(xiàn)的焦點(diǎn)為,其準(zhǔn)線(xiàn)與坐標(biāo)軸交于點(diǎn),過(guò)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),若,則直線(xiàn)的斜率________.14.在棱長(zhǎng)為6的正方體中,是的中點(diǎn),點(diǎn)是面,所在平面內(nèi)的動(dòng)點(diǎn),且滿(mǎn)足,則三棱錐的體積的最大值是__________.15.若,則=____,=___.16.一個(gè)空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示,則這個(gè)幾何體的體積是___________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線(xiàn)方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.18.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.19.(12分)在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線(xiàn)l的極坐標(biāo)方程為,若直線(xiàn)l與曲線(xiàn)C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線(xiàn)C上的兩點(diǎn),若,求面積的最大值.20.(12分)已知分別是橢圓的左、右焦點(diǎn),直線(xiàn)與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線(xiàn)與交于兩點(diǎn),直線(xiàn)的斜率都存在,且,求的值.21.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處的切線(xiàn)方程;(2)若函數(shù)沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專(zhuān)家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
易得,過(guò)B作x軸的垂線(xiàn),垂足為T(mén),在中,利用即可得到的方程.【詳解】由已知,得,過(guò)B作x軸的垂線(xiàn),垂足為T(mén),故,又所以,即,所以雙曲線(xiàn)的離心率.故選:A.本題考查雙曲線(xiàn)的離心率問(wèn)題,在作雙曲線(xiàn)離心率問(wèn)題時(shí),最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.2.C【解析】
先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題3.D【解析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.4.D【解析】
求出圓心到直線(xiàn)的距離為:,得出,根據(jù)條件得出到直線(xiàn)的距離或時(shí)滿(mǎn)足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線(xiàn)的距離為:,∴,而,與的面積相等,∴或,即到直線(xiàn)的距離或時(shí)滿(mǎn)足條件,根據(jù)點(diǎn)到直線(xiàn)距離可知,①②④滿(mǎn)足條件.故選:D.本題考查直線(xiàn)與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線(xiàn)的距離公式.5.C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個(gè)不同的住戶(hù)中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C此題考查的是排列組合知識(shí),解此類(lèi)題時(shí)一般先組合再排列,屬于基礎(chǔ)題.6.A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.7.C【解析】
直線(xiàn)恒過(guò)定點(diǎn),由此推導(dǎo)出,由此能求出點(diǎn)的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)為,直線(xiàn)恒過(guò)定點(diǎn),如圖過(guò)A、B分別作于M,于N,由,則,點(diǎn)B為AP的中點(diǎn)、連接OB,則,∴,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為,把代入直線(xiàn),解得,故選:C.本題考查直線(xiàn)與圓錐曲線(xiàn)中參數(shù)的求法,考查拋物線(xiàn)的性質(zhì),是中檔題,解題時(shí)要注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用,屬于中檔題.8.C【解析】
設(shè)出直線(xiàn)的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長(zhǎng)公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線(xiàn)l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長(zhǎng)|AB|=4.故選:C.本題主要考查了橢圓的應(yīng)用,直線(xiàn)與橢圓的關(guān)系.常需要把直線(xiàn)與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問(wèn)題的突破口.9.A【解析】
將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線(xiàn)上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線(xiàn)上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.10.D【解析】
根據(jù)新增確診曲線(xiàn)的走勢(shì)可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線(xiàn)與新增治愈曲線(xiàn)的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線(xiàn)的走勢(shì)可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對(duì)于A(yíng)選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì),A選項(xiàng)正確;對(duì)于B選項(xiàng),由圖象可知,隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù),B選項(xiàng)正確;對(duì)于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動(dòng)最大,C選項(xiàng)正確;對(duì)于D選項(xiàng),在月日及以前,我國(guó)新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11.A【解析】
先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.12.B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對(duì)任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出拋物線(xiàn)焦點(diǎn)坐標(biāo),由,結(jié)合向量的坐標(biāo)運(yùn)算得,直線(xiàn)方程為,代入拋物線(xiàn)方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.本題考查直線(xiàn)與拋物線(xiàn)相交,考查向量的線(xiàn)性運(yùn)算的坐標(biāo)表示.直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線(xiàn)與拋物線(xiàn)相交問(wèn)題的常用方法.14.【解析】
根據(jù)與相似,,過(guò)作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長(zhǎng)為6的正方體中,是的中點(diǎn),點(diǎn)是面所在平面內(nèi)的動(dòng)點(diǎn),且滿(mǎn)足,又,∴與相似∴,即,過(guò)作于,設(shè),,∴,化簡(jiǎn)得:,,根據(jù)函數(shù)單調(diào)性判斷,時(shí),取得最大值36,,在正方體中平面.三棱錐體積的最大值為本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.15.12821【解析】
令,求得的值.利用展開(kāi)式的通項(xiàng)公式,求得的值.【詳解】令,得.展開(kāi)式的通項(xiàng)公式為,當(dāng)時(shí),為,即.本小題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)公式,考查賦值法求解二項(xiàng)式系數(shù)有關(guān)問(wèn)題,屬于基礎(chǔ)題.16.【解析】
先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個(gè)棱柱,如圖,底面為邊長(zhǎng)為的直角三角形,高為的棱柱,所以體積為本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)①;②8079;(2).【解析】
(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線(xiàn)方程.②由,得,由此能求出的值.(2)根據(jù)若對(duì)任意給定的,,在區(qū)間,上總存在兩個(gè)不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線(xiàn)方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)?,,故,,①此時(shí),當(dāng)變化時(shí)、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對(duì)任意給定的,在區(qū)間上總存在兩個(gè)不同的,使得成立,當(dāng)且僅當(dāng)滿(mǎn)足下列條件,即令,,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減所以,對(duì)任意,有,即②對(duì)任意恒成立.由③式解得:④綜合①④可知,當(dāng)時(shí),對(duì)任意給定的,在上總存在兩個(gè)不同的,使成立.本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問(wèn)題,會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時(shí)所滿(mǎn)足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問(wèn)題解決.18.(1)(2)【解析】
(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比數(shù)列的前項(xiàng)和公式、裂項(xiàng)求和法,需熟記公式,屬于基礎(chǔ)題.19.(1);(2)1.【解析】
(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線(xiàn)C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線(xiàn)C的極坐標(biāo)方程為,顯然直線(xiàn)l與曲線(xiàn)C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問(wèn)題,是一道容易題.20.(1)(2)【解析】
(1)不妨設(shè),,計(jì)算得到,根據(jù)面積得到,計(jì)算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡(jiǎn)計(jì)算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 絲網(wǎng)買(mǎi)賣(mài)合同范例
- 電子產(chǎn)品測(cè)試流程解析
- 借用別公司合同范本
- 2025-2030年手拋接飛盤(pán)網(wǎng)企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年即食酸辣粉行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 信息檢測(cè)合同范例
- 保密工程合同范本
- 2025-2030年數(shù)據(jù)融合與智能分析行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢(xún)報(bào)告
- 企業(yè)參股合同范本
- 2025-2030年城市航拍服務(wù)行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢(xún)報(bào)告
- 鋼結(jié)構(gòu)實(shí)習(xí)報(bào)告
- 2024年建房四鄰協(xié)議范本
- FTTR-H 全光組網(wǎng)解決方案裝維理論考試復(fù)習(xí)試題
- 2024年廣東佛山市中醫(yī)院三水醫(yī)院招聘61人歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 2024年初三數(shù)學(xué)競(jìng)賽考試試題
- 測(cè)繪保密協(xié)議書(shū)保密協(xié)議(2024版)
- 原發(fā)性血小板減少性紫癜患者的生活質(zhì)量
- HG20202-2014 脫脂工程施工及驗(yàn)收規(guī)范
- 基層醫(yī)療機(jī)構(gòu)公共衛(wèi)生健康教育工作手冊(cè)(各類(lèi)表格模板)
- 2024年內(nèi)蒙古中考地理生物試卷(含答案)
- LY/T 3378-2024木蠟油地板
評(píng)論
0/150
提交評(píng)論