版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市嘉定區(qū)重點中學中考數學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF2.反比例函數是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)4.(2016四川省甘孜州)如圖,在5×5的正方形網格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π5.下列四個命題,正確的有()個.①有理數與無理數之和是有理數②有理數與無理數之和是無理數③無理數與無理數之和是無理數④無理數與無理數之積是無理數.A.1 B.2 C.3 D.46.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件7.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.8.自2013年10月總書記提出“精準扶貧”的重要思想以來.各地積極推進精準扶貧,加大幫扶力度.全國脫貧人口數不斷增加.僅2017年我國減少的貧困人口就接近1100萬人.將1100萬人用科學記數法表示為()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人9.把直線l:y=kx+b繞著原點旋轉180°,再向左平移1個單位長度后,經過點A(-2,0)和點B(0,4),則直線l的表達式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-210.某班要推選學生參加學校的“詩詞達人”比賽,有7名學生報名參加班級選拔賽,他們的選拔賽成績各不相同,現取其中前3名參加學校比賽.小紅要判斷自己能否參加學校比賽,在知道自己成績的情況下,還需要知道這7名學生成績的()A.眾數 B.中位數 C.平均數 D.方差二、填空題(本大題共6個小題,每小題3分,共18分)11.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側面積為_____cm1.12.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.13.在中,::1:2:3,于點D,若,則______14.如圖,在四個小正方體搭成的幾何體中,每個小正方體的棱長都是1,則該幾何體的三視圖的面積之和是_____.15.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).16.如圖,AB是⊙O的直徑,且經過弦CD的中點H,過CD延長線上一點E作⊙O的切線,切點為F.若∠ACF=65°,則∠E=.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.18.(8分)計算:÷–+2018019.(8分)如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數據:≈2.449,結果保留整數)20.(8分)某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.求出y與x的函數關系式;當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?21.(8分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉,當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.22.(10分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.23.(12分)在數學上,我們把符合一定條件的動點所形成的圖形叫做滿足該條件的點的軌跡.例如:動點P的坐標滿足(m,m﹣1),所有符合該條件的點組成的圖象在平面直角坐標系xOy中就是一次函數y=x﹣1的圖象.即點P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標系xOy中的軌跡是;(2)若點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,求點P的軌跡;(3)若拋物線y=上有兩動點M、N滿足MN=a(a為常數,且a≥4),設線段MN的中點為Q,求點Q到x軸的最短距離.24.解不等式組:,并把解集在數軸上表示出來.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據三角形外角的性質,可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.2、B【解析】
解:∵反比例函數是y=中,k=2>0,
∴此函數圖象的兩個分支分別位于一、三象限.
故選B.3、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關于原點位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點A(―3,6)且相似比為,∴點A的對應點A′的坐標是(―3×,6×),∴A′(-1,2).∵點A′′和點A′(-1,2)關于原點O對稱,∴A′′(1,―2).故答案選D.考點:位似變換.4、B【解析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉的性質.5、A【解析】解:①有理數與無理數的和一定是有理數,故本小題錯誤;②有理數與無理數的和一定是無理數,故本小題正確;③例如=0,0是有理數,故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數,故本小題錯誤.故選A.點睛:本題考查的是實數的運算及無理數、有理數的定義,熟知以上知識是解答此題的關鍵.6、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.7、B【解析】
先利用三角函數求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.8、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:1100萬=11000000=1.1×107.故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、B【解析】
先利用待定系數法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點旋轉180°即可得到直線l.【詳解】解:設直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點旋轉180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達式是y=2x?2.故選:B.【點睛】本題考查了一次函數圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關于原點對稱的規(guī)律是解題的關鍵.10、B【解析】
由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,只需知道中位數即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,故應知道中位數是多少.故選B.【點睛】本題考查了統(tǒng)計的有關知識,掌握平均數、中位數、眾數、方差的意義是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:根據圓錐的側面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側面積的計算:圓錐的側面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).12、2.【解析】
由tan∠CBD==設CD=3a、BC=4a,據此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點睛】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質,勾股定理的應用,解題關鍵是熟記性質與定理并準確識圖.13、2.1【解析】
先求出△ABC是∠A等于30°的直角三角形,再根據30°角所對的直角邊等于斜邊的一半求解.【詳解】解:根據題意,設∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【點睛】本題主要考查含30度角的直角三角形的性質和三角形內角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關鍵.14、1【解析】
根據三視圖的定義求解即可.【詳解】主視圖是第一層是三個小正方形,第二層右邊一個小正方形,主視圖的面積是4,俯視圖是三個小正方形,俯視圖的面積是3,左視圖是下邊一個小正方形,第二層一個小正方形,左視圖的面積是2,幾何體的三視圖的面積之和是4+3+2=1,故答案為1.【點睛】本題考查了簡單組合體的三視圖,利用三視圖的定義是解題關鍵.15、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉化為數學問題求解是本題的解題關鍵.16、50°.【解析】
解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.三、解答題(共8題,共72分)17、(1)y=﹣x2﹣x+3;(2)①點D坐標為(﹣,0);②點M(,0).【解析】
(1)應用待定系數法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點D坐標,證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點D,使得△APQ和△CDO全等,當D在線段OA上,∠QAP=∠DCO,AP=OC=3時,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點D坐標為(-,0).由對稱性,當點D坐標為(,0)時,由點B坐標為(4,0),此時點D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點D坐標為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點N為AC中點.∴DN時△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點M(,0)【點睛】本題是二次函數綜合題,考查了二次函數待定系數法、三角形全等的判定、銳角三角形函數的相關知識.解答時,注意數形結合.18、2【解析】
根據實數的混合運算法則進行計算.【詳解】解:原式=-(-1)+1=-+1+1=2【點睛】此題重點考察學生對實數的混合運算的應用,熟練掌握計算方法是解題的關鍵.19、此時輪船所在的B處與燈塔P的距離是98海里.【解析】【分析】過點P作PC⊥AB,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB的長即可.【詳解】作PC⊥AB于C點,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA?cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此時輪船所在的B處與燈塔P的距離是98海里.【點睛】本題考查了解直角三角形的應用舉例,正確添加輔助線構建直角三角形是解題的關鍵.20、(1)y=﹣2x+80(20≤x≤28);(2)每本紀念冊的銷售單價是25元;(3)該紀念冊銷售單價定為28元時,才能使文具店銷售該紀念冊所獲利潤最大,最大利潤是192元.【解析】
(1)待定系數法列方程組求一次函數解析式.(2)列一元二次方程求解.(3)總利潤=單件利潤銷售量:w=(x-20)(-2x+80),得到二次函數,先配方,在定義域上求最值.【詳解】(1)設y與x的函數關系式為y=kx+b.把(22,36)與(24,32)代入,得解得∴y=-2x+80(20≤x≤28).(2)設當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是x元,根據題意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本紀念冊的銷售單價是25元.(3)由題意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售價不低于20元且不高于28元,當x<30時,y隨x的增大而增大,∴當x=28時,w最大=-2×(28-30)2+200=192(元).答:該紀念冊銷售單價定為28元時,能使文具店銷售該紀念冊所獲利潤最大,最大利潤是192元.21、(1)證明見解析;(2)證明見解析;(3)4.【解析】試題分析:(1)依據AE=EF,∠DEC=∠AEF=90°,即可證明△AEF是等腰直角三角形;(2)連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰直角三角形即可得出結論;(3)當AD=AC=AB時,四邊形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.試題解析:解:(1)如圖1.∵四邊形ABFD是平行四邊形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如圖2,連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖3,當AD=AC=AB時,四邊形ABFD是菱形,設AE交CD于H,依據AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.點睛:本題屬于四邊形綜合題,主要考查了全等三角形的判定和性質、等腰直角三角形的判定和性質、平行四邊形的性質、菱形的性質以及勾股定理等知識,解題的關鍵是熟練掌握全等三角形的判定和性質,尋找全等的條件是解題的難點.22、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】
連接由題意可證明,于是得到,由等腰三角形三線合一的性質可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關于開學典禮演講稿匯編10篇
- 不一樣的春節(jié)演講稿10篇
- 肯德基寒假實習報告4篇
- 酒店服務員辭職報告集錦(15篇)
- 西游記讀后感(匯編15篇)
- 春節(jié)小學作文集錦15篇
- 全球視角看珠寶產業(yè)
- 漢字的古詩4句
- 光伏租賃合同(2篇)
- 樓面傾斜處理方案
- E車E拍行車記錄儀說明書 - 圖文-
- 人才梯隊-繼任計劃-建設方案(珍貴)
- WLANAP日常操作維護規(guī)范
- 《健身氣功》(選修)教學大綱
- 王家?guī)r隧道工程地質勘察報告(總結)
- GE公司燃氣輪機組支持軸承結構及性能分析
- 《昆明的雨》優(yōu)質課一等獎(課堂PPT)
- 油氣田地面建設工程ppt課件
- 旅行社計調OP培訓手冊pdf
- 電動蝶閥安裝步驟說明
- 全自動電鍍流水線操作說明書(共12頁)
評論
0/150
提交評論