云南省景東縣第二中學(xué)2024-2025學(xué)年高三第一次月考數(shù)學(xué)試題含解析_第1頁
云南省景東縣第二中學(xué)2024-2025學(xué)年高三第一次月考數(shù)學(xué)試題含解析_第2頁
云南省景東縣第二中學(xué)2024-2025學(xué)年高三第一次月考數(shù)學(xué)試題含解析_第3頁
云南省景東縣第二中學(xué)2024-2025學(xué)年高三第一次月考數(shù)學(xué)試題含解析_第4頁
云南省景東縣第二中學(xué)2024-2025學(xué)年高三第一次月考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

云南省景東縣第二中學(xué)2024-2025學(xué)年高三第一次月考數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.02.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標(biāo)縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標(biāo)縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍3.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知集合,,且、都是全集(為實數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.5.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④6.已知函數(shù),則()A. B. C. D.7.已知集合,,則為()A. B. C. D.8.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.9.函數(shù)圖象的大致形狀是()A. B.C. D.10.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.11.函數(shù)fxA. B.C. D.12.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的前項和為,,且,則__________.14.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.15.曲線在點處的切線方程為______.16.正四棱柱中,,.若是側(cè)面內(nèi)的動點,且,則與平面所成角的正切值的最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.18.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請說明理由.19.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時x的取值范圍;(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.21.(12分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.22.(10分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當(dāng)時,,不滿足題意;故方程組有唯一的解.故.故選:C.本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.2.D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍得到的圖像.故選:D本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.3.A【解析】

先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.4.C【解析】

根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.本題考查集合運算中的補集和交集運算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.5.D【解析】

利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇.【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.6.A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.7.C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.8.D【解析】由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故選D.9.B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.10.B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.11.A【解析】

由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→012.D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意知,繼而利用等比數(shù)列的前項和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.本題考查了等比數(shù)列的通項公式和求和公式,屬于中檔題.14.或【解析】

函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.本題考查函數(shù)的零點與方程根的關(guān)系,在求含絕對值方程時,要注意對絕對值內(nèi)數(shù)的正負(fù)進行討論.15.【解析】

對函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.本題考查運用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點處的切線方程,關(guān)鍵在于求出在切點處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.16.2.【解析】

如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,設(shè)點,則,,又,得即;又平面,為與平面所成角,令,當(dāng)時,最大,即與平面所成角的正切值的最大值為2.故答案為:2本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標(biāo),在動點坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運算求解能力和直觀想象能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)1【解析】

(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.本題考查面面垂直的判定,注意運用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學(xué)生對這些知識的理解掌握水平.18.(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,且,據(jù)此有,則平面.(Ⅱ)由題意可得平面的法向量,結(jié)合(Ⅰ)的結(jié)論可得,即平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,則,而平面的法向量,據(jù)此可得,解方程有或.據(jù)此計算可得.試題解析:(Ⅰ)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖,則,,,,∴,,設(shè)平面的法向量,∴不妨設(shè),又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,設(shè)平面的法向量,∴不妨設(shè),∴,∴平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,∴,∴,又∵平面的法向量,∴,∴,∴或.當(dāng)時,,∴;當(dāng)時,,∴.綜上,.19.(1);(2)【解析】

(1)先根據(jù)向量的數(shù)量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時取等號,所以的面積,因此的面積的最大值為.本題考查了向量的數(shù)量積的運算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20.(1)(2).【解析】

(1)利用離心率和橢圓經(jīng)過的點建立方程組,求解即可.(2)把面積之比轉(zhuǎn)化為縱坐標(biāo)之間的關(guān)系,聯(lián)立方程結(jié)合韋達定理可求.【詳解】解:(1)設(shè)焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設(shè)l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數(shù)法,建立方程組進行求解,面積問題的合理轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).21.(1);(2)【解析】

(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡可得,∴解得.(2)∵在中,,∴,∴,∴,∴.本題考查了正弦定理在邊角轉(zhuǎn)化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論