版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.42.為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差3.已知,,,則,,的大小關系為()A. B. C. D.4.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.5.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④6.生活中人們常用“通五經貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.7.已知函數(shù)滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.8.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-39.函數(shù)的一個單調遞增區(qū)間是()A. B. C. D.10.已知三棱柱()A. B. C. D.11.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.12.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.利用等面積法可以推導出在邊長為a的正三角形內任意一點到三邊的距離之和為定值,類比上述結論,利用等體積法進行推導,在棱長為a的正四面體內任意一點到四個面的距離之和也為定值,則這個定值是______14.在中,,點是邊的中點,則__________,________.15.已知函數(shù)為偶函數(shù),則_____.16.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.18.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?19.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.20.(12分)的內角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.21.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調遞增區(qū)間;(2)在中,三內角的對邊分別為,已知函數(shù)的圖像經過點,成等差數(shù)列,且,求a的值.22.(10分)若正數(shù)滿足,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
設數(shù)列的公差為.由,成等比數(shù)列,列關于的方程組,即求公差.【詳解】設數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎題.2.C【解析】
根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學抽象邏輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應用意識.3.D【解析】
構造函數(shù),利用導數(shù)求得的單調區(qū)間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數(shù)求函數(shù)的單調區(qū)間,考查化歸與轉化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.4.B【解析】
設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,
,
當且僅當三點共線時,取“=”號,∴的最小值為.
故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.5.D【解析】
計算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數(shù)關于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質,意在考查學生對于三角函數(shù)知識和圖像的綜合應用.6.C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進而得到結果.【詳解】當“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質進行分類;②按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).7.C【解析】
由題意可知,代入函數(shù)表達式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應用,屬于基礎題.8.D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應用問題,也考查了數(shù)形結合思想的應用問題.9.D【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調區(qū)間的求法,求得的單調區(qū)間,由此確定正確選項.【詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想,應用意識.10.C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=11.C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.12.D【解析】
根據(jù)題意,求得的坐標,根據(jù)點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結果.【詳解】作平面,為的重心如圖則,所以設正四面體內任意一點到四個面的距離之和為則故答案為:【點睛】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎題.14.2【解析】
根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應用,考查計算能力,屬于中檔題.15.【解析】
根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運算求解能力,屬于中檔題.16.【解析】
由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數(shù)的性質可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】
(1)求出函數(shù)的定義域和導函數(shù),,對討論,得導函數(shù)的正負,得原函數(shù)的單調性;(2)法一:由得,分別運用導函數(shù)得出函數(shù)(),的單調性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數(shù)的函數(shù)的單調性的討論,不等式恒成立時,求解參數(shù)的范圍,屬于難度題.18.(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數(shù)學期望,意在考查學生的計算能力和應用能力.19.(1)2;(2).【解析】
(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當時,有,解得;綜上,,∴實數(shù)的取值范圍是.【點睛】本題主要考查基本不等式的運用和求解含絕對值的不等式,考查學生的分類思想和計算能力,屬于中檔題.20.(1);(2).【解析】
(1)利用正弦定理將邊化角,結合誘導公式可化簡邊角關系式,求得,根據(jù)可求得結果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度北京個人房屋買賣二手房稅費結算合同2篇
- 2024款新能源汽車租賃與充電服務合同
- 2024版權方與出版公司圖書出版合同
- 二零二五年度按摩技師個人工作室運營管理合同3篇
- 2024版投影儀采購合同
- 二零二五年度家政保姆服務合同范本:家庭財務助理3篇
- 二零二五年度烘焙食品原料購買與加工服務協(xié)議2篇
- 二零二五年度房地產貸款居間合同規(guī)范范本3篇
- 監(jiān)理工程師考試《建設工程合同管理》全真習題及答案二
- 重慶交通職業(yè)學院《線性代數(shù)(理工)》2023-2024學年第一學期期末試卷
- 2024年國家公務員錄用考試公共基礎知識復習題庫2500題及答案
- DB3309T 98-2023 登步黃金瓜生產技術規(guī)程
- DBJ41-T 108-2011 鋼絲網(wǎng)架水泥膨脹珍珠巖夾芯板隔墻應用技術規(guī)程
- 2025年學長引領的讀書會定期活動合同
- 水利工程全生命周期管理-洞察分析
- 2024年物業(yè)公司服務質量保證合同條款
- JJF(陜) 049-2021 變壓器交流阻抗參數(shù)測試儀校準規(guī)范
- 詞語理解-2025年中考語文專項復習(遼寧專用)(原卷版)
- 娛樂場所突發(fā)事件應急措施及疏散預案(三篇)
- 八大危險作業(yè)安全培訓考核試卷
- 老年焦慮癥的護理
評論
0/150
提交評論