天津市一中2025年高三下學(xué)期第四次月考數(shù)學(xué)試題理試題含解析_第1頁
天津市一中2025年高三下學(xué)期第四次月考數(shù)學(xué)試題理試題含解析_第2頁
天津市一中2025年高三下學(xué)期第四次月考數(shù)學(xué)試題理試題含解析_第3頁
天津市一中2025年高三下學(xué)期第四次月考數(shù)學(xué)試題理試題含解析_第4頁
天津市一中2025年高三下學(xué)期第四次月考數(shù)學(xué)試題理試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天津市一中2025年高三下學(xué)期第四次月考數(shù)學(xué)試題理試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④2.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.3.的內(nèi)角的對邊分別為,已知,則角的大小為()A. B. C. D.4.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點對稱C.周期為 D.在上是增函數(shù)5.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.6.已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.7.設(shè)全集,集合,則=()A. B. C. D.8.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.9.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.10.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,則實數(shù)a為()A. B.2 C. D.11.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.212.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,若目標函數(shù)的最大值為,則的最小值為______.14.已知函數(shù)的圖象在點處的切線方程是,則的值等于__________.15.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.16.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標準方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值18.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應(yīng)的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.19.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.20.(12分)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線和直線的極坐標方程分別是()和(),其中().(1)寫出曲線的直角坐標方程;(2)設(shè)直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.21.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項和為,且滿足.(1)求數(shù)列、的通項公式;(2)令,證明:.22.(10分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最???

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

計算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.2.D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運算的核心素養(yǎng)3.A【解析】

先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.4.D【解析】

當時,,∴f(x)不關(guān)于直線對稱;當時,,∴f(x)關(guān)于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.5.D【解析】

由,可求出等比數(shù)列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.6.C【解析】

利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.7.A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.8.D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.9.D【解析】

先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。10.D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,,即.故選D.本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.11.C【解析】

推導(dǎo)出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.本題主要考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.12.D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數(shù)取得最大,即,即,而.故答案為.本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.14.【解析】

利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.本題考查導(dǎo)數(shù)的幾何意義,要注意在某點的切線與過某點的切線的區(qū)別,本題屬于基礎(chǔ)題.15.10【解析】

作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.16.【解析】

設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設(shè)遞增,,所以實數(shù)的最小值.本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.18.橫線處任填一個都可以,面積為.【解析】

無論選哪一個,都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉(zhuǎn)換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結(jié)合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當選擇面積公式是解題的關(guān)鍵.19.(1)(2)【解析】

(1)為假,則為真,求導(dǎo),利用導(dǎo)函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關(guān)的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關(guān)于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.20.(1);(2)16.【解析】

(1)將極坐標方程化為直角坐標方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標方程為:;(2),即同理∴當且僅當,即()時取等號即的面積最小值為16本題主要考查了極坐標方程化直角坐標方程以及極坐標的應(yīng)用,屬于中檔題.21.(1),(2)證明見解析【解析】

(1)利用首項和公差構(gòu)成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據(jù)以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項為,公差為.由題意,得,解得,∴,∴,∴當時,∴,.當時,滿足上式.∴(2),令數(shù)列的前項和為.兩式相減得∴恒成立,得證.本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當用求解的通項公式時,一定要注意驗證是否成立;(2)當一個數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.22.(1);(2)當BP為cm時,α+β取得最小值.【解析】

(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,根據(jù)得到,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論