山東省微山二中2022年高考數(shù)學考前最后一卷預測卷含解析_第1頁
山東省微山二中2022年高考數(shù)學考前最后一卷預測卷含解析_第2頁
山東省微山二中2022年高考數(shù)學考前最后一卷預測卷含解析_第3頁
山東省微山二中2022年高考數(shù)學考前最后一卷預測卷含解析_第4頁
山東省微山二中2022年高考數(shù)學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與的夾角為,,,則()A. B.0 C.0或 D.2.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.3.設,,,則,,三數(shù)的大小關系是A. B.C. D.4.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件5.設,為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件6.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.設復數(shù)滿足(為虛數(shù)單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.89.在平面直角坐標系中,將點繞原點逆時針旋轉到點,設直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.10.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}11.已知,則()A.2 B. C. D.312.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內任意一點,,,若,則的取值范圍是_______.14.設,若函數(shù)有大于零的極值點,則實數(shù)的取值范圍是_____15.設為偶函數(shù),且當時,;當時,.關于函數(shù)的零點,有下列三個命題:①當時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.16.已知向量,且,則實數(shù)的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數(shù).18.(12分)超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.(i)試運用概率統(tǒng)計的知識,若,試求p關于k的函數(shù)關系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,19.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).20.(12分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.21.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實數(shù),的值;(2)當時,若有兩個極值點,,且,,若不等式恒成立,試求實數(shù)m的取值范圍.22.(10分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.2.D【解析】

將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數(shù)的求法,屬于基礎題.3.C【解析】

利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎題,解題時選擇合適的中間值比較是關鍵,注意合理地進行等價轉化.4.D【解析】

由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.5.D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.6.A【解析】

作出函數(shù)的圖象,得到,把函數(shù)有零點轉化為與在(2,4]上有交點,利用導數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數(shù)零點的判定,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,訓練了利用導數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.7.A【解析】

由復數(shù)的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數(shù)對應的點所在象限的求解,涉及到復數(shù)的除法運算,屬于基礎題.8.A【解析】

依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.9.A【解析】

設直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導公式即可得到答案.【詳解】如圖,設直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A【點睛】本題考查三角函數(shù)的定義及誘導公式,屬于基礎題.10.C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.11.A【解析】

利用分段函數(shù)的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質,是基礎題,解題時注意函數(shù)性質的合理應用.12.B【解析】

由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質,可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結果.【詳解】設,,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關兩個點的關系求離心率,綜合性強,屬于難題.14.【解析】

先求導數(shù),求解導數(shù)為零的根,結合根的分布求解.【詳解】因為,所以,令得,因為函數(shù)有大于0的極值點,所以,即.【點睛】本題主要考查利用導數(shù)研究函數(shù)的極值點問題,極值點為導數(shù)的變號零點,側重考查轉化化歸思想.15.①②③【解析】

根據(jù)偶函數(shù)的圖象關于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結合思想,屬于難題.16.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)根據(jù)條件可得,進而得到,即可得到橢圓方程;(2)設直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設直線的方程為,聯(lián)立,整理可得,則,解得,設點,,則,,所以,故直線與直線的斜率互為相反數(shù).【點睛】本題考查直線與橢圓的位置關系,涉及橢圓的幾何性質,關鍵是求出橢圓的標準方程,屬于中檔題.18.(1)(2)(i)(,且).(ii)最大值為4.【解析】

(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關于k的函數(shù)關系式;(ii)由可得,推導出,設(),利用導函數(shù)判斷的單調性,由單調性可求出的最大值【詳解】(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,則,∴恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關于k的函數(shù)關系式為(,且)(ii)由題意知,得,,,,設(),則,令,則,∴當時,,即在上單調增減,又,,,又,,,∴k的最大值為4【點睛】本題考查古典概型的概率公式的應用,考查隨機變量及其分布,考查利用導函數(shù)判斷函數(shù)的單調性19.(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】

(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導數(shù)分析函數(shù)的單調性,進而可得出該函數(shù)的極小值;(3)由當時,以及,結合函數(shù)在區(qū)間上的單調性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為,所以,當時,函數(shù)有極小值;(3)當時,,且.由(2)可知,函數(shù)在上單調遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導數(shù)求函數(shù)的切線方程、極值以及利用導數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.20.(1)證明見解析(2)【解析】

(1)連接,交與,連接,由,得出結論;(2)以為原點,,,分別為,,軸建立空間直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論