版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市青浦區(qū)2025年高三下學期第三次月考試卷(數(shù)學試題文)考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象為A. B.C. D.2.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.3.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.24.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.5.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能6.3本不同的語文書,2本不同的數(shù)學書,從中任意取出2本,取出的書恰好都是數(shù)學書的概率是()A. B. C. D.7.已知,若則實數(shù)的取值范圍是()A. B. C. D.8.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內切圓半徑為()A. B. C. D.9.若函數(shù)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.10.已知定義在上的函數(shù),,,,則,,的大小關系為()A. B. C. D.11.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關12.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,則______.14.數(shù)列滿足,則,_____.若存在n∈N*使得成立,則實數(shù)λ的最小值為______15.如圖,在中,已知,為邊的中點.若,垂足為,則的值為__.16.在中,內角的對邊分別為,已知,則的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大?。唬?)在棱上確定一點,使二面角的平面角的余弦值為.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出的普通方程和的直角坐標方程;(2)設點在上,點在上,求的最小值以及此時的直角坐標.19.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環(huán),調節(jié)肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數(shù)為X,求X的分布列和數(shù)學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87920.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點,求證:平面;(2)若,求四棱錐的體積.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設函數(shù),對于任意,恒成立,求的取值范圍.22.(10分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網絡知識問卷調查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.2.B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3.D【解析】
設,,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.4.D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D本題主要考查了三角函數(shù)的定義,誘導公式,二倍角公式的應用求值.5.B【解析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調性,結合三角函數(shù)的性質即可比較.【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調遞減,故函數(shù)在區(qū)間上單調遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調性之間的關系是解決本題的關鍵.6.D【解析】
把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學書的只有一種,∴所求概率為.故選:D.本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.7.C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,8.B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內切圓的半徑為,則,故選:B本題考查雙曲線的定義、方程和性質,考查三角形的內心的概念,考查了轉化的思想,屬于中檔題.9.B【解析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當中的一個元素對應值域當中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.10.D【解析】
先判斷函數(shù)在時的單調性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調性,比較出三個數(shù)的大小.【詳解】當時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.本題考查了利用函數(shù)的單調性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調性是解題的關鍵.11.D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.12.B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出,然后由模的平方轉化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎.本題關鍵是用數(shù)量積的定義把模的運算轉化為數(shù)量積的運算.14.【解析】
利用“退一作差法”求得數(shù)列的通項公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調遞增,的最小項,即有的最小值為.故答案為:(1).(2).本小題主要考查根據(jù)遞推關系式求數(shù)列的通項公式,考查數(shù)列單調性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.15.【解析】
,由余弦定理,得,得,,,所以,所以.點睛:本題考查平面向量的綜合應用.本題中存在垂直關系,所以在線性表示的過程中充分利用垂直關系,得到,所以本題轉化為求長度,利用余弦定理和面積公式求解即可.16.【解析】
由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大??;
(2)設棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉化為它們法向量所成角的余弦值,由此確定出P點的坐標.試題解析:解(1)如圖,以為原點建立空間直角坐標系,則,.,故與棱所成的角是.(2)為棱中點,設,則.設平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點,其坐標為.點睛:本題主要考查線面垂直的判定與性質,以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.18.(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標方程為;(2)由題意,可設點的直角坐標為到的距離當且僅當時,取得最小值,最小值為,此時的直角坐標為.試題解析:(1)的普通方程為,的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離的最小值,.當且僅當時,取得最小值,最小值為,此時的直角坐標為.考點:坐標系與參數(shù)方程.【方法點睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結構特征,選取適當?shù)南麉⒎椒?,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關鍵:一是適當選取參數(shù);二是確保互化前后方程的等價性.注意方程中的參數(shù)的變化范圍.19.(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】
(1)由題意可計算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數(shù)學期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數(shù)成等差數(shù)列,共有(人)所以后三組頻數(shù)依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數(shù)約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系.(3)調查的100名學生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數(shù)學期望.本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關知識,考查學生分析數(shù)據(jù)與處理數(shù)據(jù)的能力,屬于中檔題.20.(1)見解析(2)【解析】
(1)設EC與DF交于點N,連結MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點為G,連結BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計算出體積.【詳解】(1)證明:設與交于點,連接,在矩形中,點為中點,∵為的中點,∴,又∵平面,平面,∴平面.(2)取中點為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.求錐體的體積要充分利用多面體的截面和旋轉體的軸截面,將空間問題轉化為平面問題求解,注意求體積的一些特殊方法——分割法、補形法、等體積法.①割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉化成已知體積公式的幾何體進行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 價格策略與定價技巧
- 2025年度家用電梯定制設計與安裝合同范本2篇
- 2025年度25噸汽車吊車租賃與施工現(xiàn)場衛(wèi)生管理合同3篇
- 二零二五年度上市公司股權激勵股權轉讓及代持協(xié)議3篇
- 生產車間消防知識培訓
- 二零二五年度停車場保險服務合同6篇
- 二零二五年度打包機租賃與安裝調試服務合同2篇
- 二零二五年度市場推廣合同標的營銷方案與推廣渠道
- 重慶市2024-2025學年高一上學期期末聯(lián)合檢測語文試卷(含答案)
- 二零二五年度婚慶活動參與者權益保障合同樣本3篇
- 提優(yōu)精練08-2023-2024學年九年級英語上學期完形填空與閱讀理解提優(yōu)精練(原卷版)
- 中央2025年全國人大機關直屬事業(yè)單位招聘18人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024年度美團平臺商家入駐服務框架協(xié)議
- 2024至2030年四氯苯醌項目投資價值分析報告
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 《肝衰竭診治指南(2024版)》解讀
- 2025年集體經濟發(fā)展計劃
- 房地產銷售主管崗位招聘筆試題及解答(某大型央企)2024年
- 足球D級教練員培訓匯報
- 巖溶區(qū)水文地質參數(shù)研究-洞察分析
- 大學體育與健康 教案全套 體育舞蹈 第1-16周
評論
0/150
提交評論