




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題2直線與圓錐曲線的位置關(guān)系一、考情分析直線與圓錐曲線的位置關(guān)系的常見題型,一是根據(jù)直線與圓錐曲線有兩個(gè)交點(diǎn),研究長度、面積、定點(diǎn)、定值等問題,二是判斷直線與圓錐曲線的公共點(diǎn)個(gè)數(shù),三是直線與圓錐曲線相切問題,其中第一類問題是高考考查頻率最高的問題.二、解題秘籍(一)根據(jù)直線與圓錐曲線有兩個(gè)交點(diǎn)研究圓錐曲線的性質(zhì)1.把直線l:SKIPIF1<0與橢圓C:SKIPIF1<0聯(lián)立,當(dāng)SKIPIF1<0時(shí)直線l與橢圓C有2個(gè)交點(diǎn);2.直線l:SKIPIF1<0與雙曲線C:SKIPIF1<0聯(lián)立得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)直線l與雙曲線C有2個(gè)交點(diǎn);當(dāng)SKIPIF1<0時(shí)直線l與雙曲線C的左右支各有一個(gè)交點(diǎn);當(dāng)SKIPIF1<0時(shí)直線l與雙曲線C的右支有2個(gè)交點(diǎn);3.直線l:SKIPIF1<0與拋物線C:SKIPIF1<0聯(lián)立,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)直線l與拋物線C有2個(gè)交點(diǎn).【例1】(2023屆重慶市南開中學(xué)校高三上學(xué)期9月月考)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,上頂點(diǎn)為D,斜率為k的直線l與橢圓C交于不同的兩點(diǎn)A,B,M為線段AB的中點(diǎn),當(dāng)點(diǎn)M的坐標(biāo)為SKIPIF1<0時(shí),直線l恰好經(jīng)過D點(diǎn).(1)求橢圓C的方程:(2)當(dāng)l不過點(diǎn)D時(shí),若直線DM與直線l的斜率互為相反數(shù),求k的取值范圍.【解析】(1)由題意知,離心率SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0兩式相減得SKIPIF1<0,所以SKIPIF1<0;所以直線為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,橢圓方程為SKIPIF1<0;(2)設(shè)直線為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0因?yàn)閘不過D點(diǎn),則SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0,化簡得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.【例2】(2023屆廣東省部分學(xué)校高三上學(xué)期聯(lián)考)設(shè)直線SKIPIF1<0與雙曲線SKIPIF1<0:SKIPIF1<0的兩條漸近線分別交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且三角形SKIPIF1<0的面積為SKIPIF1<0.(1)求SKIPIF1<0的值;(2)已知直線SKIPIF1<0與SKIPIF1<0軸不垂直且斜率不為0,SKIPIF1<0與SKIPIF1<0交于兩個(gè)不同的點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的右焦點(diǎn),若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,證明:直線SKIPIF1<0經(jīng)過SKIPIF1<0軸上的一個(gè)定點(diǎn).【解析】(1)雙曲線SKIPIF1<0:SKIPIF1<0的漸近線方程為SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0因?yàn)槿切蜸KIPIF1<0的面積為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.(2)雙曲線SKIPIF1<0的方程為SKIPIF1<0:SKIPIF1<0,所以右焦點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,若直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,故可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,化簡得SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)橹本€SKIPIF1<0的斜率存在,所以直線SKIPIF1<0的斜率也存在,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,化簡得SKIPIF1<0,所以SKIPIF1<0經(jīng)過SKIPIF1<0軸上的定點(diǎn)SKIPIF1<0.【例3】(2023屆福建省漳州市高三上學(xué)期第一次教學(xué)質(zhì)量檢測(cè))已知拋物線SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0過點(diǎn)SKIPIF1<0.(1)若SKIPIF1<0與SKIPIF1<0有且只有一個(gè)公共點(diǎn),求直線SKIPIF1<0的方程;(2)若SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,求點(diǎn)SKIPIF1<0的軌跡方程.【解析】(1)當(dāng)直線SKIPIF1<0斜率不存在時(shí),其方程為SKIPIF1<0,符合題意;當(dāng)直線SKIPIF1<0斜率存在時(shí),設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0符合題意;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.綜上,直線SKIPIF1<0的方程為SKIPIF1<0,或SKIPIF1<0,或SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不妨令SKIPIF1<0,∵直線SKIPIF1<0與拋物線SKIPIF1<0有兩個(gè)交點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,∴點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0).(二)根據(jù)直線與圓錐曲線有一個(gè)公共點(diǎn)研究圓錐曲線的性質(zhì)1.直線與橢圓有一個(gè)公共點(diǎn),則直線與橢圓相切,可把直線方程與橢圓方程聯(lián)立,整理成關(guān)于x或y的一元二次方程,由SKIPIF1<0求解;2.直線l:SKIPIF1<0與雙曲線C:SKIPIF1<0聯(lián)立得SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí)直線l與雙曲線C有1個(gè)交點(diǎn),即直線與雙曲線相切或與漸近線平行時(shí)與雙曲線有1個(gè)公共點(diǎn);3.當(dāng)直線l:SKIPIF1<0與拋物線C:SKIPIF1<0聯(lián)立,得SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí)直線l與拋物線C有1個(gè)交點(diǎn),即直線與拋物線相切或與拋物線準(zhǔn)線垂直時(shí)直線與拋物線有1個(gè)公共點(diǎn).【例4】(2023屆湖北省荊荊宜三校高三上學(xué)期9月聯(lián)考)設(shè)橢圓SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0外,且SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)若SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0上橫坐標(biāo)大于1的一點(diǎn),過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓有且僅有一個(gè)交點(diǎn),并與直線SKIPIF1<0,SKIPIF1<0交于M,N兩點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),記SKIPIF1<0,SKIPIF1<0的面積分別為SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最小值.【解析】(1)因?yàn)辄c(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0,①因?yàn)辄c(diǎn)SKIPIF1<0在橢圓SKIPIF1<0外,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,②由①②解得SKIPIF1<0,SKIPIF1<0,故橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0:SKIPIF1<0,由橢圓性質(zhì)以及點(diǎn)SKIPIF1<0的橫坐標(biāo)大于1可知,SKIPIF1<0,將直線SKIPIF1<0代入方程SKIPIF1<0并化簡可得,SKIPIF1<0,即SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與橢圓有且僅有一個(gè)交點(diǎn),所以SKIPIF1<0,即SKIPIF1<0.直線SKIPIF1<0的方程為:SKIPIF1<0;直線SKIPIF1<0的方程為SKIPIF1<0:SKIPIF1<0,聯(lián)立方程SKIPIF1<0得SKIPIF1<0,同理得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),不等式取等號(hào),故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0.【例5】已知雙曲線C:SKIPIF1<0的焦距為4,且過點(diǎn)SKIPIF1<0.(1)求雙曲線方程;(2)若直線SKIPIF1<0與雙曲線C有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)SKIPIF1<0的值.【解析】(1)由題意可知雙曲線的焦點(diǎn)為SKIPIF1<0和SKIPIF1<0,根據(jù)定義有SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0所求雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)因?yàn)殡p曲線SKIPIF1<0的方程為SKIPIF1<0,所以漸近線方程為SKIPIF1<0;由SKIPIF1<0,消去SKIPIF1<0整理得SKIPIF1<0.①當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),此時(shí)直線SKIPIF1<0與雙曲線的漸近線平行,此時(shí)直線與雙曲線相交于一點(diǎn),符合題意;②當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),由SKIPIF1<0,解得SKIPIF1<0,此時(shí)直線SKIPIF1<0雙曲線相切于一個(gè)公共點(diǎn),符合題意.綜上所述:符合題意的SKIPIF1<0的所有取值為SKIPIF1<0,SKIPIF1<0.【例6】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在SKIPIF1<0軸上的拋物線過點(diǎn)SKIPIF1<0.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過點(diǎn)P作直線l與拋物線有且只有一個(gè)公共點(diǎn),求直線l的方程;(3)過點(diǎn)SKIPIF1<0作直線交拋物線于A、B兩點(diǎn),使得Q恰好平分線段AB,求直線AB的方程.【解析】(1)因?yàn)轫旤c(diǎn)在原點(diǎn),焦點(diǎn)在y軸上的拋物線過點(diǎn)SKIPIF1<0,所以拋物線的焦點(diǎn)在y軸正半軸,設(shè)其方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入可得SKIPIF1<0,所以SKIPIF1<0,所以拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,(2)當(dāng)直線斜率不存在時(shí),過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與拋物線SKIPIF1<0有一個(gè)交點(diǎn);當(dāng)直線斜率存在時(shí),設(shè)直線斜率為SKIPIF1<0,直線方程為SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,直線與拋物線只有一個(gè)交點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,所以直線方程為SKIPIF1<0綜上,過點(diǎn)SKIPIF1<0與拋物線SKIPIF1<0有且只有一個(gè)交點(diǎn)的直線方程為SKIPIF1<0和SKIPIF1<0;(3)設(shè)點(diǎn)SKIPIF1<0,直線SKIPIF1<0斜率為SKIPIF1<0點(diǎn)SKIPIF1<0在拋物線上,所以SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0,所以直線方程為SKIPIF1<0經(jīng)檢驗(yàn),直線SKIPIF1<0符合題意.(三)判斷直線與圓錐曲線公共點(diǎn)個(gè)數(shù)判斷直線l:Ax+By+C=0與圓錐曲線C:F(x,y)=0公共點(diǎn)個(gè)數(shù)時(shí),通常將直線l的方程Ax+By+C=0(A、B不同時(shí)為0)代入圓錐曲線C的方程F(x,y)=0,消去y(也可以消去x)得到一個(gè)關(guān)于變量x(或變量y)的一元方程.消去y后得ax2+bx+c=0.(1)當(dāng)a≠0時(shí),設(shè)一元二次方程ax2+bx+c=0的判別式為Δ,則Δ>0?直線與圓錐曲線C有2個(gè)公共點(diǎn);Δ=0?直線與圓錐曲線C有1個(gè)公共點(diǎn);Δ<0?直線與圓錐曲線C沒有公共點(diǎn).(2)當(dāng)a=0,b≠0時(shí),即得到一個(gè)一次方程,則直線l與圓錐曲線C相交,且只有一個(gè)交點(diǎn),此時(shí),若C為雙曲線,則直線l與雙曲線的漸近線平行;若C為拋物線,則直線l與拋物線的對(duì)稱軸重合或平行.【例7】(2022屆浙江省溫州市樂清市高三下學(xué)期5月仿真)已知SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在直線SKIPIF1<0的同側(cè),且點(diǎn)SKIPIF1<0到直線l的距離分別為SKIPIF1<0.(1)若橢圓C的方程為SKIPIF1<0,直線l的方程為SKIPIF1<0,求SKIPIF1<0的值,并判斷直線與橢圓C的公共點(diǎn)的個(gè)數(shù);(2)若直線l與橢圓C有兩個(gè)公共點(diǎn),試求SKIPIF1<0所需要滿足的條件;【解析】(1)橢圓C的方程為SKIPIF1<0,則SKIPIF1<0.又直線SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0.聯(lián)立SKIPIF1<0,消去y可得:SKIPIF1<0.因?yàn)镾KIPIF1<0,所以直線SKIPIF1<0與橢圓C有1個(gè)公共點(diǎn).(2)聯(lián)立SKIPIF1<0,消去y可得:SKIPIF1<0.因?yàn)橹本€l與橢圓C有兩個(gè)公共點(diǎn),所以SKIPIF1<0,整理化簡得:SKIPIF1<0.又SKIPIF1<0,其中SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.所以直線l與橢圓C有兩個(gè)公共點(diǎn),則SKIPIF1<0.【例8】如圖,F是拋物線SKIPIF1<0的焦點(diǎn),Q是準(zhǔn)線與x軸的交點(diǎn),斜率為k的直線l經(jīng)過點(diǎn)Q.(1)當(dāng)k取不同數(shù)值時(shí),求直線l與拋物線公共點(diǎn)的個(gè)數(shù);(2)若直線l與拋物線相交于A、B兩點(diǎn),求證:SKIPIF1<0是定值.(3)在x軸上是否存在這樣的定點(diǎn)M,對(duì)任意的過點(diǎn)Q的直線l與拋物線相交于A、B兩點(diǎn),均能使得SKIPIF1<0為定值,若有,找出滿足條件的點(diǎn)M;若沒有,請(qǐng)說明理由.【解析】(1)拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,代入SKIPIF1<0并化簡得SKIPIF1<0①.當(dāng)SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,與SKIPIF1<0的交點(diǎn)為原點(diǎn)SKIPIF1<0,直線l與拋物線有SKIPIF1<0個(gè)公共點(diǎn);當(dāng)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,直線l與拋物線有SKIPIF1<0個(gè)公共點(diǎn);若SKIPIF1<0,即SKIPIF1<0時(shí),直線l與拋物線有SKIPIF1<0個(gè)公共點(diǎn);若SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,直線l與拋物線沒有公共點(diǎn).(2)由于直線SKIPIF1<0與拋物線有兩個(gè)交點(diǎn),由(1)得SKIPIF1<0.設(shè)交點(diǎn)SKIPIF1<0、SKIPIF1<0,由①得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0為定值0.(3)若存在滿足條件的點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值.則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0為定值SKIPIF1<0.三、跟蹤檢測(cè)1.已知,分別是橢圓的左、右焦點(diǎn),點(diǎn),在直線的同側(cè),且點(diǎn),到直線l的距離分別為,.(1)若橢圓C的方程為,直線l的方程為,求的值,并判斷直線l與橢圓C的公共點(diǎn)的個(gè)數(shù);(2)若直線l與橢圓C有兩個(gè)公共點(diǎn),試求所需要滿足的條件;(3)結(jié)合(1)和(2),試寫出一個(gè)能判斷直線l與橢圓C有公共點(diǎn)的充要條件(不需要證明).2.已知拋物線的方程為,直線l繞點(diǎn)旋轉(zhuǎn),討論直線l與拋物線的公共點(diǎn)個(gè)數(shù),并回答下列問題:(1)畫出圖形表示直線l與拋物線的各種位置關(guān)系,從圖中你發(fā)現(xiàn)直線l與拋物線只有一個(gè)公共點(diǎn)時(shí)是什么情況?(2)與直線l的方程組成的方程組解的個(gè)數(shù)與公共點(diǎn)的個(gè)數(shù)是什么關(guān)系?3.(2023屆四川、云南部分學(xué)校高三上學(xué)期9月聯(lián)考)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,其左右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0是橢圓上任意一點(diǎn),且滿足SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)過橢圓外一點(diǎn)SKIPIF1<0作橢圓的兩條切線SKIPIF1<0,滿足SKIPIF1<0,求動(dòng)點(diǎn)SKIPIF1<0的軌跡方程.4.(2023屆甘肅省金昌市永昌縣高三上學(xué)期模擬)已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0是SKIPIF1<0上一動(dòng)點(diǎn),SKIPIF1<0的最大面積為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)若直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為SKIPIF1<0上兩點(diǎn),且SKIPIF1<0,求四邊形SKIPIF1<0面積的最大值.5.設(shè)SKIPIF1<0為雙曲線SKIPIF1<0的左?右頂點(diǎn),直線SKIPIF1<0過右焦點(diǎn)SKIPIF1<0且與雙曲線SKIPIF1<0的右支交于SKIPIF1<0兩點(diǎn),當(dāng)直線SKIPIF1<0垂直于SKIPIF1<0軸時(shí),SKIPIF1<0為等腰直角三角形.(1)求雙曲線SKIPIF1<0的離心率;(2)已知SKIPIF1<0,若直線SKIPIF1<0分別交直線SKIPIF1<0于SKIPIF1<0兩點(diǎn),當(dāng)直線SKIPIF1<0的傾斜角變化時(shí),以SKIPIF1<0為直徑的圓是否過定點(diǎn),若過定點(diǎn)求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.6.(2023屆安徽省部分校高三上學(xué)期開學(xué)摸底)已知SKIPIF1<0為坐標(biāo)原點(diǎn),橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,記線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0.(1)若直線SKIPIF1<0的斜率為3,求直線SKIPIF1<0的斜率;(2)若四邊形SKIPIF1<0為平行四邊形,求SKIPIF1<0的取值范圍.7.(2023屆浙江省A9協(xié)作體高三上學(xué)期聯(lián)考)已知直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩個(gè)不同的點(diǎn).(1)求SKIPIF1<0的取值范圍;(2)若SKIPIF1<0為雙曲線SKIPIF1<0的左頂點(diǎn),點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的左支上,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的右支上,且直線SKIPIF1<0、SKIPIF1<0分別與SKIPIF1<0軸交于SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 供水公司窨井管理辦法
- 檔案項(xiàng)目流程管理辦法
- 農(nóng)機(jī)人力資源管理辦法
- 村鎮(zhèn)門面出路管理辦法
- 制定項(xiàng)目招待管理辦法
- 小學(xué)生現(xiàn)代詩歌創(chuàng)作興趣培養(yǎng)研究
- 施工現(xiàn)場吊裝操作規(guī)范
- 校外機(jī)構(gòu)應(yīng)急管理辦法
- 工程技術(shù):我國測(cè)量技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)分析
- 數(shù)據(jù)驅(qū)動(dòng)下的職業(yè)院校網(wǎng)上辦事大廳一體化平臺(tái)優(yōu)化與實(shí)證研究
- 2025區(qū)域型變電站智能巡視系統(tǒng)技術(shù)規(guī)范
- 財(cái)務(wù)報(bào)表編制與審核合同模板
- 上海閔行區(qū)教育系統(tǒng)招聘實(shí)驗(yàn)員考試真題2024
- 建設(shè)部建設(shè)工程重大質(zhì)量安全事故應(yīng)急預(yù)案
- 2025年中航油招聘筆試參考題庫附帶答案詳解
- 2024年中國中高端電子鋁箔行業(yè)市場調(diào)查報(bào)告
- DB54∕T 0275-2023 民用建筑節(jié)能技術(shù)標(biāo)準(zhǔn)
- 2025年人教版小學(xué)五年級(jí)英語(下冊(cè))期末試卷及答案
- 交通貨運(yùn)企業(yè)-隱患排查治理和防控制度
- 中煙公司財(cái)務(wù)管理制度
- 《學(xué)習(xí)雷鋒精神爭主題班會(huì)》課件
評(píng)論
0/150
提交評(píng)論