2024屆廣東省佛山市南海區(qū)桂城街道重點名校中考四模數(shù)學試題含解析_第1頁
2024屆廣東省佛山市南海區(qū)桂城街道重點名校中考四模數(shù)學試題含解析_第2頁
2024屆廣東省佛山市南海區(qū)桂城街道重點名校中考四模數(shù)學試題含解析_第3頁
2024屆廣東省佛山市南海區(qū)桂城街道重點名校中考四模數(shù)學試題含解析_第4頁
2024屆廣東省佛山市南海區(qū)桂城街道重點名校中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆廣東省佛山市南海區(qū)桂城街道重點名校中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)2.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內(nèi)角和是180°D.拋一枚硬幣,落地后正面朝上3.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.4.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個5.下列幾何體中,俯視圖為三角形的是()A. B. C. D.6.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.7.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.8.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>29.某種商品的進價為800元,出售時標價為1200元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折10.計算的結(jié)果是()A.1 B.-1 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.12.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.13.對于任意實數(shù)m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據(jù)上述定義解決問題:若a<2※x<7,且解集中有兩個整數(shù)解,則a的取值范圍是_____.14.如圖,為保護門源百里油菜花海,由“芬芳浴”游客中心A處修建通往百米觀景長廊BC的兩條棧道AB,AC.若∠B=56°,∠C=45°,則游客中心A到觀景長廊BC的距離AD的長約為_____米.(sin56°≈0.8,tan56°≈1.5)15.分解因:=______________________.16.按照神舟號飛船環(huán)境控制與生命保障分系統(tǒng)的設計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.17.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.19.(5分)如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD.BE平分∠ABC,點H是BC邊的中點.連接DH,交BE于點G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結(jié)論.20.(8分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.21.(10分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.這次調(diào)查的市民人數(shù)為________人,m=________,n=________;補全條形統(tǒng)計圖;若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.22.(10分)已知動點P以每秒2

cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6

cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?23.(12分)解不等式組,并把解集在數(shù)軸上表示出來.24.(14分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.2、C【解析】分析:必然事件就是一定發(fā)生的事件,依據(jù)定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內(nèi)心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內(nèi)角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、C【解析】

解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.4、C【解析】

由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.5、C【解析】

俯視圖是從上面所看到的圖形,可根據(jù)各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環(huán),故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.6、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.7、C【解析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【點睛】此題考查函數(shù)的圖象,解題關鍵在于觀察圖形8、D【解析】

先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標,再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關于原點對稱,

∴A、B兩點關于原點對稱,

∵點A的橫坐標為1,∴點B的橫坐標為-1,

∵由函數(shù)圖象可知,當-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,

∴當y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時x的取值范圍是解答此題的關鍵.9、B【解析】

設可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點睛】本題考查的是一元一次不等式的應用,解此類題目時注意利潤和折數(shù),計算折數(shù)時注意要除以2.解答本題的關鍵是讀懂題意,求出打折之后的利潤,根據(jù)利潤率不低于5%,列不等式求解.10、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.12、【解析】

依據(jù)∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據(jù)相似三角形的性質(zhì),即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【點睛】本題主要考查了相似三角形的判定與性質(zhì),在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.13、【解析】

解:根據(jù)題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數(shù)解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數(shù)解,準確理解題意正確計算是本題的解題關鍵.14、60【解析】

根據(jù)題意和圖形可以分別表示出AD和CD的長,從而可以求得AD的長,本題得以解決.【詳解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考點:解直角三角形的應用.15、(x-2y)(x-2y+1)【解析】

根據(jù)所給代數(shù)式第一、二、五項一組,第三、四項一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)16、17℃.【解析】

根據(jù)返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點睛】本題考查正數(shù)和負數(shù)的意義.±4℃指的是比21℃高于4℃或低于4℃.17、3或1【解析】

分當點F落在矩形內(nèi)部時和當點F落在AD邊上時兩種情況求BE得長即可.【詳解】當△CEF為直角三角形時,有兩種情況:當點F落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應用等知識點,解題時要注意分情況討論.三、解答題(共7小題,滿分69分)18、證明見解析【解析】

首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質(zhì)與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì)與平行四邊形的判定.19、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】

(1)首先根據(jù)AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,進一步得到∠ACD=∠DBF,結(jié)合CD=BD,即可證明出△ADC≌△FDB;(2)由△ADC≌△FDB得到AC=BF,結(jié)合CE=AE,即可證明出結(jié)論;(3)由點H是BC邊的中點,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,結(jié)合BE⊥AC,即可判斷出△ECG的形狀.【詳解】解:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC∵CD⊥AB∴∠ACD=∠ABE(同角的余角相等)又∵CD=BD∴△ADC≌△FDB(2)∵AB=BC,BE平分∠ABC∴AE=CE則CE=AC由(1)知:△ADC≌△FDB∴AC=BF∴CE=BF(3)△ECG為等腰直角三角形,理由如下:由點H是BC的中點,得GH垂直平分BC,從而有CG=BG,則∠EGC=2∠CBG=∠ABC=45°,又∵BE⊥AC,故△ECG為等腰直角三角形.【點睛】本題主要考查全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),解答本題的關鍵是熟練掌握全等三角形的判定,此題難度不是很大.20、(1)詳見解析;(2);(3).【解析】

(1)只要證明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先證明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想辦法證明AB垂直平分CF即可解決問題.【詳解】(1)證明:如圖1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切線,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如圖2中,∵△ACB∽△BED;四邊形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如圖3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易證△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,設CF交AB于H,則CF=2CH=2×.【點睛】本題考查相似三角形的判定和性質(zhì)、圓周角定理、切線的性質(zhì)、解直角三角形、線段的垂直平分線的判定和性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考??碱}型.21、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】

(1)根據(jù)項目B的人數(shù)以及百分比,即可得到這次調(diào)查的市民人數(shù),據(jù)此可得項目A,C的百分比;(2)根據(jù)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖;(3)根據(jù)全市總?cè)藬?shù)乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數(shù).【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.22、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】

(1)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論