人教版中學(xué)七年級(jí)數(shù)學(xué)下冊(cè)期末解答題考試題(含答案)_第1頁(yè)
人教版中學(xué)七年級(jí)數(shù)學(xué)下冊(cè)期末解答題考試題(含答案)_第2頁(yè)
人教版中學(xué)七年級(jí)數(shù)學(xué)下冊(cè)期末解答題考試題(含答案)_第3頁(yè)
人教版中學(xué)七年級(jí)數(shù)學(xué)下冊(cè)期末解答題考試題(含答案)_第4頁(yè)
人教版中學(xué)七年級(jí)數(shù)學(xué)下冊(cè)期末解答題考試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版中學(xué)七年級(jí)數(shù)學(xué)下冊(cè)期末解答題考試題(含答案)

一、解答題

1.觀察下圖,每個(gè)小正方形的邊長(zhǎng)均為1,

(1)圖中陰影部分的面積是多少?邊長(zhǎng)是多少?

(2)估計(jì)邊長(zhǎng)的值在哪兩個(gè)整數(shù)之間.

2.如圖,用兩個(gè)邊長(zhǎng)為15夜的小正方形拼成一個(gè)大的正方形,

(1)求大正方形的邊長(zhǎng)?

(2)若沿此大正方形邊的方向剪出一個(gè)長(zhǎng)方形,能否使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為

4:3,且面積為720cm2?

3.工人師傅準(zhǔn)備從一塊面積為25平方分米的正方形工料上裁剪出一塊18平方分米的長(zhǎng)方

形的工件.

(1)求正方形工料的邊長(zhǎng);

(2)若要求裁下來(lái)的長(zhǎng)方形的長(zhǎng)寬的比為3:2,問(wèn)這塊正方形工料是否合格?(參考數(shù)

據(jù):正=1.414,6=1.732,石=2.236)

4.小麗想用一塊面積為36cm2的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為

20cm2的長(zhǎng)方形紙片,使它的長(zhǎng)是寬的2倍.她不知能否裁得出來(lái),正在發(fā)愁.小明見(jiàn)了

說(shuō):"別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片."你同意小明的說(shuō)法嗎?

你認(rèn)為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?

5.有一塊正方形鋼板,面積為16平方米.

(1)求正方形鋼板的邊長(zhǎng).

(2)李師傅準(zhǔn)備用它裁剪出一塊面積為12平方米的長(zhǎng)方形工件,且要求長(zhǎng)寬之比為

3:2,問(wèn)李師傅能辦到嗎?若能,求出長(zhǎng)方形的長(zhǎng)和寬;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)

據(jù):6“1.414,6=1.732).

二、解答題

6.已知,AE//BD,ZA=ZD.

(1)如圖1,求證:AB//CD;

(2)如圖2,作NS4E的平分線交CD于點(diǎn)尸,點(diǎn)G為A3上一點(diǎn),連接FG,若NC/G的

平分線交線段AG于點(diǎn)連接AC,若44CE=/S4C+/8GM,過(guò)點(diǎn)"作“ML切交

FG的延長(zhǎng)線于點(diǎn)用,且3/E-5NAF”=18°,求/£4歹+/GM"的度數(shù).

明理由).

(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫出結(jié)論

(3)如圖③,已知AB〃CD,則N1+N2+...+Nn-l+Nc的度數(shù)為.

8.如圖1,點(diǎn)A在直線MN上,點(diǎn)B在直線S7上,點(diǎn)C在MN,ST之間,且滿足

ZMAC+ZACB+ZSBC=360°.

(1)證明:MN//ST;

(2)如圖2,若NACB=60。,ADHCB,點(diǎn)E在線段8c上,連接AE,且

NDAE=2NCBT,試判斷/C4E與NOW的數(shù)量關(guān)系,并說(shuō)明理由;

1QQO

(3)如圖3,若N4C8=a("為大于等于2的整數(shù)),點(diǎn)E在線段8c上,連接AE,

n

若NMAE=nZCBT,則ZCAE:NCAN=.

圖1圖2圖3

9.已知A皮/CD,定點(diǎn)E,F分別在直線AB,8上,在平行線A8,8之間有一動(dòng)點(diǎn)

P.

EBEB

CFD

備用圖1

圖1

[EB

EB

CFD

CFD

備用圖3

備用圖2

(1)如圖1所示時(shí),試問(wèn)NAEP,NEPF,NPFC滿足怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

(2)除了(1)的結(jié)論外,試問(wèn)加P,AEPF,ZPFC還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫

圖并證明

(3)當(dāng)NEP/滿足0°<NEPF<180°,且QE,。尸分別平分NPEB和NPFO,

①若NEPF=60°,貝ljNEQF=。.

②猜想NE/小"與NEQ尸的數(shù)量關(guān)系.(直接寫出結(jié)論)

10.汛期即將來(lái)臨,防汛指揮部在某水域一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查

看河水及兩岸河堤的情況.如圖1,燈A射出的光束自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),

燈3射出的光束自BP順時(shí)針旋轉(zhuǎn)至B。便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A射出

的光束轉(zhuǎn)動(dòng)的速度是?!?秒,燈B射出的光束轉(zhuǎn)動(dòng)的速度是〃/秒,且。、匕滿足

Ia-3b|+(a+6-4)2=0.假定這一帶水域兩岸河堤是平行的,即PQ〃MN,且

NBAN=45°.

(2)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射出的光束到達(dá)AN之前,若兩燈射出的光束交于點(diǎn)

C,過(guò)C作CDLAC交PQ于點(diǎn)。,若NBCD=20。,求㈤C的度數(shù);

(3)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射出的光束才開(kāi)始轉(zhuǎn)動(dòng),在燈8射出的光束到達(dá)BQ

之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?

三、解答題

11.已知AM〃CN,點(diǎn)8為平面內(nèi)一點(diǎn),ABLBC于8.

圖1圖2圖3

(1)如圖1,點(diǎn)B在兩條平行線外,則4與NC之間的數(shù)量關(guān)系為;

(2)點(diǎn)B在兩條平行線之間,過(guò)點(diǎn)B作AM于點(diǎn)。.

①如圖2,說(shuō)明NAB£>=NC成立的理由:

②如圖3,平分/D3C交DW于點(diǎn)平分交QM于點(diǎn)E.若

ZFCB+NNCF=180°,NBFC=3/DBE,求ZEBC的度數(shù).

12.己知直角ABC的邊與直線。分別相交于。、G兩點(diǎn),與直線b分別交于E,F

點(diǎn),且ZAC8=90°.

(1)將直角..ABC如圖1位置擺放,如果440G=56。,貝ljNCEF=;

(2)將直角“A8C如圖2位置擺放,N為4c上一點(diǎn),ZNEF+NCEF=180。,請(qǐng)寫出

NNEF與NAOG之間的等量關(guān)系,并說(shuō)明理由;

(3)將直角,ABC如圖3位置擺放,若NGOC=135。,延長(zhǎng)AC交直線b于點(diǎn)Q,點(diǎn)P是射

線G尸上一動(dòng)點(diǎn),探究NPOQ,NOPQ與/PQF的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論.

13.為更好地理清平行線相關(guān)角的關(guān)系,小明爸爸為他準(zhǔn)備了四根細(xì)直木條A3、BC、

(1)如圖2,小明將折線調(diào)節(jié)成ZB=5()。,ZC=85°,ZD=35°,判斷AB是否平行于

ED,并說(shuō)明理由;

(2)如圖3,若NC=N£)=35。,調(diào)整線段45、3c使得45〃C£)求出此時(shí)D8的度數(shù),

要求畫出圖形,并寫出計(jì)算過(guò)程.

(3)若NC=85。,NO=35。,ABUDE,請(qǐng)直接寫出此時(shí)DB的度數(shù).

14.如圖1所示:點(diǎn)E為BC上一點(diǎn),ZZl=ZD,ABWCD

(1)直接寫出NACB與NBED的數(shù)量關(guān)系;

(2)如圖2,ABWCD,BG平分NABE,8G的反向延長(zhǎng)線與NEDF的平分線交于“點(diǎn),若

ZDEB比NGHD大60。,求NDEB的度數(shù);

(3)保持(2)中所求的N?!?的度數(shù)不變,如圖3,BM平分NEBK,ON平分NCDE,作

BPWDN,則NP8M的度數(shù)是否改變?若不發(fā)生變化,請(qǐng)求它的度數(shù),若發(fā)生改變,請(qǐng)說(shuō)明

理由.(本題中的角均為大于0°且小于180。的角).

15.已知:直線《II4,A為直線人上的一個(gè)定點(diǎn),過(guò)點(diǎn)A的直線交6于點(diǎn)氏點(diǎn)C在線段

BA的延長(zhǎng)線上.D,E為直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)。在點(diǎn)E的左側(cè),連接AD,AE,滿足

4AED=ZDAE.點(diǎn)M在4上,且在點(diǎn)8的左側(cè).

(1)如圖1,若N8A£>=25。,NAEO=50。,直接寫出NA8M的度數(shù):

(2)射線AF為N6。的角平分線.

①如圖2,當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時(shí),用等式表示NEAF與NABD之間的數(shù)量關(guān)系,并證明;

②當(dāng)點(diǎn)D與點(diǎn)8不重合,且NABM+NEAF=150。時(shí),直接寫出NEAF的度數(shù)」

圖1圖2

四、解答題

16.在AA8c中,射線AG平分NBAC交BC于點(diǎn)G,點(diǎn)。在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重

合),過(guò)點(diǎn)。作DEIIAC交A8于點(diǎn)E.

E

Z4

圖1r\備用圖

(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分NEDB

①若NBAC=100。,ZC=30°,則NAFD=;若NB=40。,則NAFD=;

②試探究NAFD與NB之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),ZBDE的角平分線所在直線與射線AG交于點(diǎn)F試探究

NAFD與NB之間的數(shù)量關(guān)系,并說(shuō)明理由

17.在一ABC中,射線AG平分NBAC交8c于點(diǎn)G,點(diǎn)。在8c邊上運(yùn)動(dòng)(不與點(diǎn)G重

合),過(guò)點(diǎn)。作OE//AC交AB于點(diǎn)E.

(1)如圖1,點(diǎn)。在線段CG上運(yùn)動(dòng)時(shí),DF平分NEDB.

①若NBAC=100",ZC=30",則ZA/?=;若N8=40°,則ZAfD=;

②試探究NAED與£>8之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(2)點(diǎn)O在線段3G上運(yùn)動(dòng)時(shí),N8DE的角平分線所在直線與射線AG交于點(diǎn)F.試探究

NAFD與DB之間的數(shù)量關(guān)系,并說(shuō)明理由.

18.RtAABC中,NC=90。,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令

ZPDA=Z1,ZPEB=Z2,ZDPE=Za.

(1)若點(diǎn)P在線段AB上,如圖(1)所示,且Na=50。,則Nl+N2=。;

(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則Na、Nl、N2之間的關(guān)系為:;

(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則Na、Z1>N2之間有何關(guān)系?

猜想并說(shuō)明理由.

圖3圖4

(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則Na、N1、N2之間的關(guān)系為:.

19.閱讀下列材料并解答問(wèn)題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)

的3倍,那么這樣的三角形我們稱為"夢(mèng)想三角形"例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別

是120。,40。,20。,這個(gè)三角形就是一個(gè)“夢(mèng)想三角形J反之,若一個(gè)三角形是“夢(mèng)想三角

形",那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.

(1)如果一個(gè)"夢(mèng)想三角形”有一個(gè)角為108。,那么這個(gè)"夢(mèng)想三角形"的最小內(nèi)角的度數(shù)為

(2)如圖1,已知N/WON=60。,在射線OM上取一點(diǎn)4,過(guò)點(diǎn)A作交。N于點(diǎn)

B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與。、B重合),若NACB=80。.判

定AAOB、△AOC是否是“夢(mèng)想三角形",為什么?

(3)如圖2,點(diǎn)。在AABC的邊上,連接DC,作NADC的平分線交AC于點(diǎn)E,在。C上

取一點(diǎn)F,使得NEFC+N8DC=180。,ZDEF=NB.若△BC。是“夢(mèng)想三角形”,求NB的度

圖1圖2

20.如圖,已知直線allb,NABC=100。,BD平分NABC交直線a于點(diǎn)D,線段EF在線段

AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過(guò)程中BD所在的直線與EF所在的

直線交于點(diǎn)P.問(wèn)N1的度數(shù)與NEPB的度數(shù)又怎樣的關(guān)系?

(特殊化)

(1)當(dāng)N1=40。,交點(diǎn)P在直線a、直線b之間,求NEPB的度數(shù);

D

a

(一般化)

(3)當(dāng)Nl=n。,求NEPB的度數(shù)(直接用含n的代數(shù)式表示).

【參考答案】

一、解答題

1.(1)圖中陰影部分的面積17,邊長(zhǎng)是;(2)邊長(zhǎng)的值在4與5之間

【分析】

(1)由圖形可以得到陰影正方形的面積等于原來(lái)大正方形的面積減去周圍四個(gè)直角三角形

的面積,由正方形的面積等于邊長(zhǎng)乘以邊長(zhǎng),可

解析:(1)圖中陰影部分的面積17,邊長(zhǎng)是舊;(2)邊長(zhǎng)的值在4與5之間

【分析】

(1)由圖形可以得到陰影正方形的面積等于原來(lái)大正方形的面積減去周圍四個(gè)直角三角形

的面積,由正方形的面積等于邊長(zhǎng)乘以邊長(zhǎng),可以得到陰影正方形的邊長(zhǎng);

(2)根據(jù)而<炳<后,可以估算出邊長(zhǎng)的值在哪兩個(gè)整數(shù)之間.

【詳解】

1'4

(1)由圖可知,圖中陰影正方形的面積是:5x5二’4=17

則陰影正方形的邊長(zhǎng)為:717

答:圖中陰影部分的面積17,邊長(zhǎng)是如

(2)1/716<717<725

所以4cJ萬(wàn)V5

邊長(zhǎng)的值在4與5之間;

【點(diǎn)睛】

本題主要考查了無(wú)理數(shù)的估算及算術(shù)平方根的定義,解題主要利用了勾股定理和正方形的

面積求解,有一定的綜合性,解題關(guān)健是無(wú)理數(shù)的估算.

2.(1)30;(2)不能.

【解析】

【分析】

(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);

(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.

【詳解】

解:(1)??,大正方形的面積是:

大正

解析:(1)30:(2)不能.

【解析】

【分析】

(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);

(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.

【詳解】

解:(1)?.?大正方形的面積是:2x(15&y

???大正方形的邊長(zhǎng)是:,2x(15@2=4900=30;

(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為4xcm,寬為3xcm,

則4x?3x=720,

解得:x=>/60,

4x=,4x4x60=7960>30,

所以沿此大正方形邊的方向剪出一個(gè)長(zhǎng)方形,不能使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為4:

3,且面積為720cm2.

故答案為(1)30;(2)不能.

【點(diǎn)睛】

本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.

3.(1)正方形工料的邊長(zhǎng)是5分米;

(2)這塊正方形工料不合格,理由見(jiàn)解析.

【詳解】

試題分析:(1)根據(jù)正方形的面積公式求出的值即可;

(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為3x分米、2x分米,得出方程3

解析:(1)正方形工料的邊長(zhǎng)是5分米;

(2)這塊正方形工料不合格,理由見(jiàn)解析.

【詳解】

試題分析:(1)根據(jù)正方形的面積公式求出后的值即可;

(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為3x分米、2x分米,得出方程3x?2x=18,求出x=6,再求出

長(zhǎng)方形的長(zhǎng)和寬和5比較即可得出答案.

試題解析:(1)???正方形的面積是25平方分米,

???正方形工料的邊長(zhǎng)是5分米;

(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為3x分米、2x分米,

則3x?2x=18,

x2=3,

xi=V3,X2=-6(舍去),

3x=36>5,2x=2百<5,

即這塊正方形工料不合格.

4.不同意,理由見(jiàn)解析

【分析】

先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20

列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.

【詳解】

解:不同意,

因?yàn)檎叫蔚拿娣e為,

解析:不同意,理由見(jiàn)解析

【分析】

先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為x,長(zhǎng)為2x,然后依據(jù)矩形的面積為20列方

程求得x的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.

【詳解】

解:不同意,

因?yàn)檎叫蔚拿娣e為36cm"故邊長(zhǎng)為6cm

設(shè)長(zhǎng)方形寬為x,則長(zhǎng)為2x

長(zhǎng)方形面積=x-2x=2x2=20

x2=10,

解得x=&6(負(fù)值舍去)

長(zhǎng)為2>/10cm>6cm

即長(zhǎng)方形的長(zhǎng)大于正方形的邊長(zhǎng),

所以不能裁出符合要求的長(zhǎng)方形紙片

【點(diǎn)睛】

本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關(guān)鍵.

5.(1)4米(2)見(jiàn)解析

【分析】

(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;

(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬

與正方形邊長(zhǎng)的大小可得結(jié)論.

【詳解】

解析:(1)4米(2)見(jiàn)解析

【分析】

(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;

(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為3x米、2x米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正

方形邊長(zhǎng)的大小可得結(jié)論.

【詳解】

解:(1)正方形的面積是16平方米,

???正方形鋼板的邊長(zhǎng)是=4米;

(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為3x米、2x米,

則3x?2x=12,

x2=2.

X=\[l,

3x=3>/2>4>2x=2V2<4>

,長(zhǎng)方形長(zhǎng)是36米,而正方形的邊長(zhǎng)為4米,所以李師傅不能辦到.

【點(diǎn)睛】

本題考查了算術(shù)平方根的實(shí)際應(yīng)用,靈活的利用算術(shù)平方根表示正方形和長(zhǎng)方形的邊長(zhǎng)是

解題的關(guān)鍵.

二、解答題

6.(1)見(jiàn)解析;(2)

【分析】

(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即

可得證;

(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得

出,再根據(jù)平角的

解析:(1)見(jiàn)解析;(2)72°

【分析】

(1)根據(jù)平行線的性質(zhì)得出4+4=180。,再根據(jù)等量代換可得N3+ND=180。,最后根

據(jù)平行線的判定即可得證;

(2)過(guò)點(diǎn)E作E尸〃C£),延長(zhǎng)DC至Q,過(guò)點(diǎn)M作MN//AB,根據(jù)平行線的性質(zhì)及等量

代換可得出4ECQ=2BGM=NDFG,再根據(jù)平角的含義得出NECF=NCFG,然后根據(jù)

平行線的性質(zhì)及角平分線的定義可推出NBHF=NCFH,ZCFA=ZFAB;設(shè)

匕FAB=a,ZCFH=。,根據(jù)角的和差可得出=,結(jié)合已知條件

3ZA£C-5ZAF”=180??汕蟮肗AfH=18。,最后根據(jù)垂線的含義及平行線的性質(zhì),即可

得出答案.

【詳解】

(1)證明:AE//BD

.?.NA+NB=180°

ZA=ZD

.?.ZB+Z£>=180°

ABIICD,

(2)過(guò)點(diǎn)E作EP//C。,延長(zhǎng)。C至Q,過(guò)點(diǎn)M作MN//AB

ABI/CD

ZQCA=ZCABfNBGM=ZDFG,/CFH=/BHF,ZCFA=FAG

ZACE=/BAC+NBGM

ZECQ+ZQCA=ZBAC+NBGM

ZECQ=NBGM=ZDFG

,ZECQ+ECD=180°,ZDFG+CFG=180°

NECF=/CFG

AB//CD

:.AB//EP

NPEA=NEAB,APEC=Z-ECF

ZAEC=ZPEC-ZPEA

.?.ZAEC=ZECF-ZEAB

ZECF=ZAEC+ZEAB

AF平分ABAE

NEAF=/FAB=-ZEAB

2

FH平分/CFG

??.ZCFH=ZHFG=-々CFG

2

QCD//AB

NBHF=/CFH,ZCFA=/FAB

設(shè)ZFAB=a/CFH=0

ZAFH=ZCFH-ZCFA=ZCFH-ZFAB

:.乙AFH=0—a,4BHF=4CFH=(3

ZECF+2ZAFH=ZAEC+ZEAB+2ZAFH=ZAEC+2J3

NECF+2ZAFH=ZE+2NBHF

:.ZAEC=2ZAFH

3ZA£C—5ZAfH=180°

.-.ZA/7/=18°

FHLHM

:"FHM=90°

NGHM=毀。_0

NCFM+ZMM尸=180°

ZHMB=2HMN=90°-0

Z.EAF=ZFAB

ZEAF=4CFA=NCFH-ZAFH=/7-18°

ZEAF+NGMH=#-18。+90。-4=72。

:.ZEAF+ZGMH=12°.

【點(diǎn)睛】

本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行

推理是解此題的關(guān)鍵.

7.(1)AB//CD,證明見(jiàn)解析;(2)

ZEl+ZE2+...ZEn=ZB+ZFl+ZF2+...ZFn-l+ZD;(3)(n-l)*180°

【分析】

(1)過(guò)點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出

解析:(1)AB//CD,證明見(jiàn)解析;(2)NEi+NE2+...NE〃=NB+ZFi+ZF2+...ZFn-i+ZD;

(3)(n-l)?180°

【分析】

(1)過(guò)點(diǎn)E作EF〃人8,利用平行線的性質(zhì)則可得出NB=NBEF,再由已知及平行線的判定

即可得出AB〃CD;

(2)如圖,過(guò)點(diǎn)E作E/W〃A8,過(guò)點(diǎn)F作FN〃AB,過(guò)點(diǎn)G作GH//AB,根據(jù)探究(1)的

證明過(guò)程及方法,可推出NE+NG=N8+NF+ND,則可由此得出規(guī)律,并得出

NEi+N&+...NE”=NB+NFi+NF2+...NF〃-i+ND;

(3)如圖,過(guò)點(diǎn)M作EF〃人B,過(guò)點(diǎn)N作GH//A8,則可由平行線的性質(zhì)得出

Z1+Z2+ZMNG=180°x2,依此即可得出此題結(jié)論.

【詳解】

解:(1)過(guò)點(diǎn)E作EF〃AB,

ZB=ZBEF.

■:ZBEF+NFED=NBED,

ZB+ZFED=4BED.

ZB+ZD=ZE(已知),

/.ZFED=2D.

.?.CD〃EF(內(nèi)錯(cuò)角相等,兩直線平行).

/.AB//CD.

(2)過(guò)點(diǎn)£作EM〃八B,過(guò)點(diǎn)、F作FN//AB,過(guò)點(diǎn)G作GH〃八B,

,/ABHCD,

:.ABHEMUFNHGHHCD,

:.ZB=ZBEM,ZMEF=tEFN,ZNFG=4FGH,ZHGD=AD,

???ZBEFMFGD=NBEM+NMEF+NFGH+NHGD=Z8+NEFN+NNFG+ND=ZB+ZEFG+ZD,

即NE+NG=ZB+ZF+ND.

由此可得:開(kāi)口朝左的所有角度之和與開(kāi)口朝右的所有角度之和相等,

ZEi+NE2+...ZEn=Z8+NFi+ZF2+...ZFn-i+ZD.

故答案為:ZEi+Z&+.../En=NB+NFi+NF2+...ZFn-i+ZD.

(3)如圖,過(guò)點(diǎn)M作EFIIAB,過(guò)點(diǎn)N作GH//4B,

ZAPM+APME=180°,

,:EFIIAB,GHI/AB,

:.EFHGH,

ZEMN+NM/VG=180°,

/.Z1+Z2+ZM/VG=180°x2,

依次類推:Z1+Z2+...+Zn-l+Zn=(n-l)>180°.

故答案為:

【點(diǎn)睛】

本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過(guò)E點(diǎn)作AB(或CD)的平行線,

把復(fù)雜的圖形化歸為基本圖形.

8.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)n-1

【分析】

(1)連接AB,根據(jù)已知證明NMAB+NSBA=180°,即可得證;

(2)作CFIIST,設(shè)NCBT=a,表示出NCAN,ZACF,ZBCF,根據(jù)

解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)n-1

【分析】

(1)連接A8,根據(jù)已知證明N/VM8+NS8A=180。,即可得證;

(2)作CFIIST,設(shè)NCBT=a,表示出NCAN,ZACF,ZBCF,根據(jù)ADIIBC,得到

ZDAC=120°,求出NCAE即可得到結(jié)論;

(3)作CFIIS7,設(shè)NCBT=6,得到ZCB7=NBCF=6,分別表示出NCAN和NCAE,即可得到

比值.

【詳解】

解:(1)如圖,連接A3,

ZMAC+ZACB+ZSBC=360°,

ZACB+ZABC+ABAC=180°,

.1ZM4B+Z58A=180°,

MN//ST

(2)^CAE=2ZCAN,

理由:作6//門,則MN//CF//S7,如圖,

設(shè)NCBT=a,則NZME=2a.

ZBCF=^CBT=a,NOW=ZACF=60°-a,

AD//BC,ZDAC=1800-ZACB=120°,

ZC4E=120°-NDAE=120°-2a=2(60°-a)=2NCAN.

即NC4£=2NGW.

(3)作CF〃與T,則MN〃C/〃ST,如圖,設(shè)NCBT=/3,則NM4£=〃Q.

M乂N

\F-->C

E

BT

.CF//ST,

/CBT=/BCF=0,

”AZ180。A180?!?

ZACF=/CAN=--------p=------------—,

nn

1QAO〃_1

ZCAE=180°-ZMAE-ZCAN=180°-n/7----+0=——(180°-??/?),

nn

n—11

ZCAE:ZCAN=——:一=〃-l,

nn

故答案為〃-1.

【點(diǎn)睛】

本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.

9.(1)ZAEP+ZPFC=ZEPF;(2)ZAEP+ZEPF+ZPFC=360°;(3)①150°

或30;②NEPF+2ZEQF=360°或NEPF=2ZEQF

【分析】

(1)由于點(diǎn)是平行線,之間

解析:(1)ZAEP+ZPFC=ZEPF;(2)ZAEP+ZEPF+APfC=360°;⑶①150°或30;

②NEPF+2NEQF=360°或NEPF=2ZEQF

【分析】

(1)由于點(diǎn)尸是平行線A3,CQ之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)尸的位置進(jìn)行分類討論:

如圖1,當(dāng)尸點(diǎn)在EF的左側(cè)時(shí),ZAEP,NEPF,/PFC滿足數(shù)量關(guān)系為:

ZEPF=ZAEP+ZPFC;

(2)當(dāng)P點(diǎn)在£尸的右側(cè)時(shí),ZAEP,aEPF,/PFC滿足數(shù)量關(guān)系為:

ZAEP+ZEPF+NPFC=360°;

(3)①若當(dāng)尸點(diǎn)在EF的左側(cè)時(shí),NEQF=ZBEQ+NQFD=150°;當(dāng)尸點(diǎn)在所的右側(cè)時(shí),

可求得NBEQ+ZQFD=30°;

②結(jié)合①可得NEPF=180O-2/BEQ+18(r-2N?RQ=360O-2(NBEQ+NPFD),由

ZEQF=ZBEQ+ZDFQ,得出NEPF+2NEQF=360。;可得EPF=4EP+"FD,由

ZBEQ+Z.DFQ=NEQF,得出NEPF=2NEQF.

【詳解】

解:(1)如圖1,過(guò)點(diǎn)尸作PG/MB,

PG//AB,

:.ZEPG=ZAEP,

AB//CD,

PGIICD,

:.ZFPG=4PFC,

ZAEP+ZPFC=/EPF;

(2)如圖2,當(dāng)P點(diǎn)在族的右側(cè)時(shí),ZAEP,/EPF,NPFC滿足數(shù)量關(guān)系為:

ZAEP+ZEPF+/PFC=360°;

圖2

過(guò)點(diǎn)P作PG//45,

PG//AB,

ZEPG+ZAEP=180°,

AB//CD,

:.PGI/CD,

ZFPG+ZPFC=18(Tf

/.ZAEP+ZEPF+APFC=360°;

(3)①如圖3,若當(dāng)P點(diǎn)在E尸的左側(cè)時(shí),

圖3

ZEPF=60°,

.?.ZP£B+ZP/D=360o-60°=300o,

EQ,A2分另I」平分NPEB和NPED,

Z.BEQ=1/PEB,ZQFD=gZPFD,

/.EQF=Z.BEQ+ZQFD=-(/PEB+ZPFD)=^x300°=150°;

如圖4,當(dāng)尸點(diǎn)在族的右側(cè)時(shí),

ZEPF=60°,

:.NPEB+ZPFD=60。,

ZBEQ+NQFD=;(NPEB+NPFD)=-x600=30°;

故答案為:150?;?0;

②由①可知:NEQF=NBEQ+NQFD=g(NPEB+NPFD)=g(360。一NEPF),

NEPF+2NEQF=360°;

ZEQF=ZBEQ+AQFD=g(NPEB+NPFD)=;ZEPF,

:.NEPF=2NEQF.

綜合以上可得NEPF與NEQF的數(shù)量關(guān)系為:NEPF+2NEQF=360°或NEPF=2NEQF.

【點(diǎn)睛】

本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的

度數(shù),是解此題的關(guān)鍵.

10.(1),;(2)30°;(3)15秒或82.5秒

【分析】

(1)解出式子即可;

(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出

t的值,進(jìn)而求出的度數(shù);

(3)根據(jù)燈B的

解析:(1)a=3,b=l;(2)30°;(3)15秒或82.5秒

【分析】

(1)解出式子M-3耳+(。+人一4『=0即可;

(2)根據(jù)PQ〃MN,用含t的式子表示出4C4,根據(jù)(2)中給出的條件得出方程式

ABCD=90°-ABCA=90°-[180°-(2r)°]=(2f)°-90°=20°,求出t的值,進(jìn)而求出NBAC

的度數(shù);

(3)根據(jù)燈B的要求,t<150,在這個(gè)時(shí)間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.

【詳解】

解:(1).|。一36|+(〃+人一4)2=0.

又■」a-36|W0,(a+i>-4)2>0.

.'.67—3jZ?—15

(2)設(shè)A燈轉(zhuǎn)動(dòng)時(shí)間為f秒,

如圖,作CE//PQ,而PQ//MN,

PQ//CE//MN,

ZACE=/CAN=180°-3產(chǎn),NBCE=ZCBD=t°,

NBCA=ZCBD+ZCAN=?°+180°-(3f)°=180°-(2z)°,

ZAC£)=90。,

NBCD=90°-ZBCA=90°-[l80°-(2r)°]=(2f)°-90°=20°,

:.t=55

ZCUV=180°-(3r)°,

ZBAC=450-[180°-(3/)°]=(3r)°-135°=165°-135°=30°

(3)設(shè)A燈轉(zhuǎn)動(dòng)r秒,兩燈的光束互相平行.

依題意得0<f<150

①當(dāng)0<f<60時(shí),

兩河岸平行,所以N2=Z3=(3t)。

兩光線平行,所以N2=Nl=30+f°

所以,Z1=Z3

即:3f=30+r,

解得f=15;

②當(dāng)60vf<120時(shí),

兩光束平行,所以N2=N3=(30+f)。

兩河岸平行,所以/1+/2=180。

4=3180°

所以,3/-180+30+?=180,

解得1=82.5;

③當(dāng)120</<150時(shí),圖大概如①所示

3f-360=1+30,

解得f=195>150(不合題意)

綜上所述,當(dāng)t=15秒或82.5秒時(shí),兩燈的光束互相平行.

【點(diǎn)睛】

這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對(duì)應(yīng)角列出

方程是解題的關(guān)鍵.

三、解答題

11.(1)ZA+ZC=90°;(2)①見(jiàn)解析;(2)105°

【分析】

(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;

(2)①過(guò)點(diǎn)B作BGIIDM,根據(jù)平行線找角的聯(lián)系即可求解;②先過(guò)點(diǎn)B作

BGII

解析:(1)NA+NC=90。;(2)①見(jiàn)解析;②105。

【分析】

(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;

(2)①過(guò)點(diǎn)B作BGIIDM,根據(jù)平行線找角的聯(lián)系即可求解;②先過(guò)點(diǎn)B作8GliDM,

根據(jù)角平分線的定義,得出NABF=NGBF,再設(shè)NDBE=a,ZABF=6,根據(jù)

NCBF+NBFC+NBCF=180°,可得2a+6+3/3a+6=180°,根據(jù)八8_L8C,可得6+6+2a=90°,最

o

后解方程組即可得到NABE=15°f進(jìn)而得出NEBC=NABE+NABC=15+90°=105°.

【詳解】

解:(1)如圖1,與BC的交點(diǎn)記作點(diǎn)O,

,/AMWC/V,

ZC=Z408,

AB.LBC,

/.ZA+N408=90°,

/.Z4+Z090°;

BDLAM,

DB±BGf

Z08G=90°,

「?ZA80+N48G=90°,

,/AB±BC,

ZC8G+N4BG=90°,

/.ZABD=Z.CBG,

---AMWCN,BGWDM,

BGHCN,

「?ZC=ZCBG,

ZABD=NC;

②如圖3,過(guò)點(diǎn)8作BGIIDM,

,:BF平分NDBC,BE平分NABD,

???ZDBFSCBF,ZDBE=AABE,

由(2)知NABD=NCBG,

ZABF"GBF,

設(shè)ND8E=a,ZABF=6f

則NABE=a,ZABD=2a=Z.CBG,

ZGBF=NAFB=6,

Z8FC=3NDBE=3a,

ZAFC=3a+6f

':ZAFC+AA/CF=180°,ZFCB+ZA/CF=180°,

ZFCB=ZAFC=3a+69

△8CF中,由NCBF+NBFC+NBCF=180°W:

2a+6+3a+3a+6=180°,

,/AB±BC,

:.6+6+2a=90°,

a=15°,

ZABE=15°f

...ZEBC=/ABE+Z.^BC=15°+90°=105°.

【點(diǎn)睛】

本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問(wèn)題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角

的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相

關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.

12.(1)146°;(2)ZAOG+ZNEF=90°;(3)見(jiàn)解析

【分析】

(1)作CP//a,則CP〃a〃b,根據(jù)平行線的性質(zhì)求解.

(2)作CP//a,由平行線的性質(zhì)及等量代換得NAOG+NN

解析:(1)146°;(2)NAOG+NNEF=90°;(3)見(jiàn)解析

【分析】

(1)作CP〃a,則CP〃a〃b,根據(jù)平行線的性質(zhì)求解.

(2)作CP//a,由平行線的性質(zhì)及等量代換得NAOG+NNEF=NACP+NPCB=90".

(3)分類討論點(diǎn)P在線段GF上或線段GF延長(zhǎng)線上兩種情況,過(guò)點(diǎn)P作a,b的平行線求

解.

【詳解】

解:(1)如圖,作CP〃a,

a//b,CP//a,

CPIlailb,

:.ZAOG=NACP=56°,ZSCP+ZCEF=180°,

ZBCP=180°-NCEF,

ZACP+N8cp=90°,

ZAOG+180°-NCEF=90°,

:.ZCEF=180--90°+Z406=146°.

(2)Z40G+ZNEF=90°.理由如下:

如圖,作CP〃a,則CP〃a//b,

ZAOG=NACP,ZBCP+ZCEF=180°,

???ZNEF+4CEF=180",

ZBCP=ZNEF,

■:ZACP+NBCP=90°,

:.ZAOG+NNEF=90°.

(3)如圖,當(dāng)點(diǎn)P在GF上時(shí),作PN〃a,連接PQ,OP,則PN//a〃b,

ZGOP=NOPN,ZPQF=NNPQ,

:.ZOPQ=NOPA/+ZNPQ=NGOP+ZPQF,

■■■ZGOC=NGOP+ZPOQ=135°,

ZGOP=1350-ZPOQ,

:.ZOPQ=1350-ZPOQ+ZPQF.

如圖,當(dāng)點(diǎn)P在GF延長(zhǎng)線上時(shí),作P/V〃a,連接PQ,OP刪PN〃a〃b,

:.ZGOP=NOPN,ZPQF=NNPQ,

■:ZOPW=ZOPQ+ZQPN,

:.ZGOP=NOPQ+ZPQF,

1350-ZPOQ=NOPQ+ZPQF.

【點(diǎn)睛】

本題考查平行線的性質(zhì)的應(yīng)用,解題關(guān)鍵是熟練掌握平行線的性質(zhì),通過(guò)添加輔助線及分

類討論的方法求解.

13.(1)平行,理由見(jiàn)解析;(2)35?;?45。,畫圖、過(guò)程見(jiàn)解析;(3)50°

或130?;?0?;?20°

【分析】

(1)過(guò)點(diǎn)C作CFIIAB,根據(jù)NB=50。,ZC=85°,ZD=35°,即可得C

解析:(1)平行,理由見(jiàn)解析;(2)35?;?45。,畫圖、過(guò)程見(jiàn)解析;(3)50?;?30?;?/p>

60°或120°

【分析】

(1)過(guò)點(diǎn)C作CFIIAB,根據(jù)N8=50°,ZC=85°,N。=35°,即可得CFHED,進(jìn)而可以判斷

AB平行于ED;

(2)根據(jù)題意作ABUCD,即可N8=NC=35。;

(3)分別畫圖,根據(jù)平行線的性質(zhì)計(jì)算出NB的度數(shù).

【詳解】

解:(1)AB平行于ED,理由如下:

如圖2,過(guò)點(diǎn)C作CFIIAB,

ZBCF=N8=50°,

???Z88=85°,

/.ZFCD=85°-50o=35°,

???ZD=35°,

ZFCD=ZD,

/.CFIIED,

???CFIIAB,

(2)如圖,即為所求作的圖形.

圖3

,/ABWCD,

/.ZABC=^C=35°,

??.N8的度數(shù)為:35°;

??,ABIICD,

ZABC+Z.C=180°,

的度數(shù)為:145°;

???N8的度數(shù)為:35。或145。;

(3)如圖2,過(guò)點(diǎn)C作CFIMB,

圖2

,/4811DE,

:.CFWDE,

ZFCD=Z0=35°,

,/ZBCD=85°,

??.ZBCF=85°-35°=50°,

ZB=ZBCF=50°.

答:NB的度數(shù)為50。.

如圖5,過(guò)C作CFII48,則ABIICFIICD,

ZFCD=Z0=35°,

,/ZBCD=85°,

ZBCF=85o-35°=50°,

?「4BIICF,

ZB+NBCF=180°,

/.Z8=130°;

如圖6,/ZC=85°,ZD=35°,

C

圖6

ZCFD=180o-85o-35o=60°,

,/4811DE,

:.ZB=ZCFD=60°,

如圖7,同理得:Z8=35°+85°=120°,

c

綜上所述,N8的度數(shù)為50。或130。或60?;?20。.

【點(diǎn)睛】

本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是區(qū)分平行線的判定與性質(zhì),并熟練運(yùn)

用.

14.(1);(2);(3)不發(fā)生變化,理由見(jiàn)解析

【分析】

⑴如圖1,延長(zhǎng)DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;

(2)如圖2,過(guò)點(diǎn)E作ESIIAB,過(guò)點(diǎn)H作HTIIAB,根據(jù)ABIICD,ABIIE

解析:⑴NACB+NB£D=180。;⑵100。;⑶不發(fā)生變化,理由見(jiàn)解析

【分析】

⑴如圖1,延長(zhǎng)DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出NAC3+N5EZ)=180。;

⑵如圖2,過(guò)點(diǎn)E作ESIIAB,過(guò)點(diǎn)“作HTIIAB,根據(jù)A8IICD,A8IIES推出

ABED=ZABE+ZCDE,再根據(jù)A8II7H,ABIICD推出NG/7D=N7WD-N7W3,最后根

據(jù)ABED比ZBHD大60°得出Z5E。的度數(shù);

(3)如圖3,過(guò)點(diǎn)E作EQIIDN,根據(jù)=得出6-a的度數(shù),根據(jù)條件

再逐步求出NPBM的度數(shù).

【詳解】

⑴如答圖1所示,延長(zhǎng)DE交A8于點(diǎn)F.

ABWCD,所以”=NEF3,

又因?yàn)镹A=N£>,所以NA=NEEB,所以ACIIDF,所以NAC3=NCED.

因?yàn)?CED+NBED=180°,所以ZACB+ZBED=180°.

(2)如答圖2所示,過(guò)點(diǎn)E作ESHAB,過(guò)點(diǎn)“作HTIIAB.

設(shè)ZABG=NEBG=a,2FDH=4EDH=。,

因?yàn)锳BIICD,4811ES,所以ZABE=N8ES,ZSED=NCED,

所以NBED=ABES+NSED=ZABE+ZCDE=勿+180。-2£,

因?yàn)锳BIITH,ABWCD,所以ZABG=NTHB,NFDH=NDHT,所以

ZGHD=ZTHD-Z.THB=p-a,

因?yàn)镹3ED比大60。,所以加+180。一2月一(£-a)=60。,所以£-a=40。,所以

ZBHD=40°,所以N3E£>=100°

(3)不發(fā)生變化

如答圖3所示,過(guò)點(diǎn)E作EQIIDN.

設(shè)NCDN=/EDN=a,NEBM=NKBM=0,

由(2)易知NOEB=NCDE+ZA5E,所以21+180。-2£=100。,所以/-a=40。,

所以NDEB=NCDE+ZEDN+180°-(ZEBM+NPBM)=a+180。一尸一NPBM,

所以NPBM=80°-(/?-?)=40°.

【點(diǎn)睛】

本題考查了平行線的性質(zhì),求角的度數(shù),正確作出相關(guān)的輔助線,根據(jù)條件逐步求出角度

的度數(shù)是解題的關(guān)鍵.

15.(1);(2)①,見(jiàn)解析;②或

【分析】

(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;

(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對(duì)比即可;②分類

討論點(diǎn)在的左右兩側(cè)的情況,

解析:(1)125°;(2)@ZABD^2ZEAF,見(jiàn)解析;②30°或110。

【分析】

(1)由平行線的性質(zhì)可得到:ZDEA=ZEAN,NMBA=/BAN,再利用角的等量代換

換算即可;

(2)①設(shè)NE4F=a,ZAED=NDAE=0,利用角平分線的定義和角的等量代換表示出

乙針。對(duì)比即可;②分類討論點(diǎn)。在8的左右兩側(cè)的情況,運(yùn)用角的等量代換換算即可.

【詳解】

解:(1)設(shè)在上有一點(diǎn)/V在點(diǎn)4的右側(cè),如圖所示:

/.ZDEA=ZEAN,ZMBA=ZBAN

??.ZAED=ZDAE=ZEAN=50°

??.ZBAN=ZBAD+ZDAE+ZEAN=25°+50°+50°=125°

NB4M=125。

(2)(1)ZABD=2ZEAF.

證明:設(shè)NE4F=a,ZAED=ZDAE=J3.

.ZFAD=ZEAF-i-ZDAE=a+/3.

-A/為/CAD的角平分線,

.ZCAD=2ZFAD=2a+2/3.

???4EAN=AAED=B.

??./CAN=/CAD-/DAE-/EAN=2a+2/3-0-0=2a.

ZABD=ZCAN=2a=2ZEAF.

②當(dāng)點(diǎn)。在點(diǎn)B右側(cè)時(shí),如圖:

??.ZABM+2ZE4F=180°

???ZABM+ZEAF=15Q0

/.ZE4F=180°-150o=30°

當(dāng)點(diǎn)D在點(diǎn)B左側(cè),E在B右側(cè)時(shí),如圖:

A廠為NCAD的角平分線

ZDAF=-ZCAD

2

1.,A/2

NAED=NNAE,NCAN=NABE

■:NDAE=NAED=NNAE

:.NDAE=g(NDAE+NNAE)=;NDAN

ZEAF=ZDAF+ZDAE=-(ZCAD+ZDAN)=-(3600-ZCAN)

22

=180°--ZABE

2

???ZABE+ZABM=\80°

:.ZEAF=180°--(l80°-ZABM)=90°+-ZABM

22

又ZEAF+ZABM=]50°

ZEAF=90°+.1x(150°-NEAF)=165°-1ZEAF

ZEAF=H0°

當(dāng)點(diǎn)。和廠在點(diǎn)8左側(cè)時(shí),設(shè)在4上有一點(diǎn)G在點(diǎn)8的右側(cè)如圖:

此時(shí)仍有ND4E=,ND4N,ZDAF=-ZCAD

2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論