2025屆河南省豫東、豫北十所名校高中畢業(yè)班第二次診斷性檢測試題數(shù)學試題含解析_第1頁
2025屆河南省豫東、豫北十所名校高中畢業(yè)班第二次診斷性檢測試題數(shù)學試題含解析_第2頁
2025屆河南省豫東、豫北十所名校高中畢業(yè)班第二次診斷性檢測試題數(shù)學試題含解析_第3頁
2025屆河南省豫東、豫北十所名校高中畢業(yè)班第二次診斷性檢測試題數(shù)學試題含解析_第4頁
2025屆河南省豫東、豫北十所名校高中畢業(yè)班第二次診斷性檢測試題數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省豫東、豫北十所名校高中畢業(yè)班第二次診斷性檢測試題數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題3.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.4.定義在R上的函數(shù)滿足,為的導函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.5.已知集合,集合,則()A. B. C. D.6.在中所對的邊分別是,若,則()A.37 B.13 C. D.7.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件8.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.9.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B. C. D.10.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.11.在中,內(nèi)角的平分線交邊于點,,,,則的面積是()A. B. C. D.12.已知復數(shù),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.14.函數(shù)的定義域是__________.15.記實數(shù)中的最大數(shù)為,最小數(shù)為.已知實數(shù)且三數(shù)能構成三角形的三邊長,若,則的取值范圍是.16.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.18.(12分)已知函數(shù),為的導數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.19.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.20.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F(xiàn)分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.求證:(1)直線平面EFG;(2)直線平面SDB.21.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.22.(10分)近年空氣質量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院人進行了問卷調查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題2.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.3.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應為k>5?本題選擇C選項.點睛:使用循環(huán)結構尋數(shù)時,要明確數(shù)字的結構特征,決定循環(huán)的終止條件與數(shù)的結構特征的關系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.4.C【解析】

先從函數(shù)單調性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C本題考查了函數(shù)單調性和不等式的基礎知識,屬于中檔題.5.C【解析】

求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎題.6.D【解析】

直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.本題主要考查余弦定理解三角形,屬于基礎題.7.B【解析】

由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質,可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應用.8.A【解析】

根據(jù)輸入的值大小關系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A本題考查了對數(shù)式大小比較,條件程序框圖的簡單應用,屬于基礎題.9.B【解析】

根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結合圖像,分段討論函數(shù)的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數(shù),結合導數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.本題考查了函數(shù)圖像的畫法,函數(shù)零點定義及應用,根據(jù)零點個數(shù)求參數(shù)的取值范圍,導數(shù)的幾何意義應用,屬于中檔題.10.C【解析】

根據(jù)程序框圖的運行,循環(huán)算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.本題考查根據(jù)程序框圖的循環(huán)結構,已知輸出結果求條件框,屬于基礎題.11.B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.12.B【解析】

利用復數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B本小題主要考查復數(shù)的除法運算、加法運算,考查復數(shù)的模,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.36010【解析】

列出所有租船的情況,分別計算出租金,由此能求出結果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.本小題主要考查分類討論的數(shù)學思想方法,考查實際應用問題,屬于基礎題.14.【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.15.【解析】試題分析:顯然,又,①當時,,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點分別是(1,1)和,從而②當時,,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點分別是(1,1)和,從而綜上所述,的取值范圍是.考點:不等式、簡單線性規(guī)劃.16.【解析】

計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數(shù)的有界性是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2).【解析】

(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質,即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進行“邊轉角”尋求角的關系,利用“角轉邊”尋求邊的關系,利用余弦定理借助三邊關系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結合正、余弦定理解題.18.(1)見解析;(2).【解析】

(1)對求導,令,求導研究單調性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因為,,所以,存在使得,即.所以,當時,為減函數(shù),當時,為增函數(shù),故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數(shù),(*)若時,為增函數(shù),所以的最小值為.注意到時,,且此時,(?。┊敃r,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數(shù),所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.本題考查了函數(shù)與導數(shù)綜合,考查了利用導數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,分類討論,數(shù)學運算能力,屬于較難題.19.(1)見解析;(2)【解析】

(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.20.(1)見解析(2)見解析【解析】

(1)連接AC、BD交于點O,交EF于點H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點O,交EF于點H,連接GH,所以O為AC的中點,H為OC的中點,由E、F為DC、BC的中點,再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因為側面底面ABCD,由面面垂直的性質定理可知平面ABCD,所以,因為底面ABCD是菱形,所以,因為,所以平面SDB.本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.21.(1)點M的極坐標為或(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論