




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青海西寧二十一中2025年高三下學期第三次綜合練習數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數(shù)滿足,在復平面內對應的點為,則不可能為()A. B. C. D.2.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.3.已知為實數(shù)集,,,則()A. B. C. D.4.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數(shù)學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.15.已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.6.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4007.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-28.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.99.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.10.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.11.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.412.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.14.已知向量,,且,則________.15.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內任意一點,,,若,則的取值范圍是_______.16.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點且,,,.求證:平面平面以;求二面角的大小.18.(12分)中,內角的對邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.19.(12分)如圖,三棱柱中,底面是等邊三角形,側面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)已知函數(shù),(1)證明:在區(qū)間單調遞減;(2)證明:對任意的有.21.(12分)已知函數(shù)(1)若對任意恒成立,求實數(shù)的取值范圍;(2)求證:22.(10分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.本題主要考查了復數(shù)的概念、復數(shù)的幾何意義,還考查了推理論證能力,屬于基礎題.2.C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數(shù)列前項和中最小的.【詳解】解:等差數(shù)列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數(shù)列前項和中最小的是.故選:C.本題主要考查等差數(shù)列的性質,等差數(shù)列的通項公式的應用,屬于中檔題.3.C【解析】
求出集合,,,由此能求出.【詳解】為實數(shù)集,,,或,.故選:.本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.4.C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.5.C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.本題考查三角函數(shù)圖象變換,同時也考查了正弦型函數(shù)與周期相關的問題,解題的關鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.6.B【解析】
設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎題.7.D【解析】
由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.8.D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質結合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當時,,
令,則,解得或1,
又∵函數(shù)是定義域為的奇函數(shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個,
故選D.本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.9.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.10.A【解析】
由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.11.C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.本題主要考查函數(shù)的對稱性的應用,屬于中檔題.12.A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關鍵在于恰當?shù)貙ο蛄窟M行轉換,便于計算解題.14.【解析】
根據(jù)垂直向量的坐標表示可得出關于實數(shù)的等式,即可求得實數(shù)的值.【詳解】,且,則,解得.故答案為:.本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.15.【解析】
由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結果.【詳解】設,,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:此題考查的是利用橢圓中相關兩個點的關系求離心率,綜合性強,屬于難題.16.【解析】
根據(jù)題意,設,則,所以,解得,所以,從而有.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.證明見解析;.【解析】
推導出,,從而平面,由此證明平面平面以;以為原點,建立空間直角坐標系,利用法向量求出二面角的大小.【詳解】解:,,為的中點,四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點,.平面平面,且平面平面,平面.如圖,以為原點建立空間直角坐標系,則平面的一個法向量為,,,,,設,則,,,,,在平面中,,,設平面的法向量為,則,即,平面的一個法向量為,,由圖知二面角為銳角,所以所求二面角大小為.本題考查面面垂直的證明,考查二面角的大小的求法,考查了空間向量的應用,屬于中檔題.18.(1);(2)【解析】
(1)利用正弦定理,轉化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.19.(1)見解析(2)【解析】
(1)連結BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△ABA1是等腰直角三角形,設AB,則AA1=2a,BM=AM=a,推導出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結,因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結,,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設,則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.20.(1)答案見解析.(2)答案見解析【解析】
(1)利用復合函數(shù)求導求出,利用導數(shù)與函數(shù)單調性之間的關系即可求解.(2)首先證,令,求導可得單調遞增,由即可證出;再令,再利用導數(shù)可得單調遞增,由即可證出.【詳解】(1)顯然時,,故在單調遞減.(2)首先證,令,則單調遞增,且,所以再令,所以單調遞增,即,∴本題考查了利用導數(shù)研究函數(shù)的單調性、利用導數(shù)證明不等式,解題的關鍵掌握復合函數(shù)求導,屬于難題.21.(1);(2)見解析.【解析】
(1)將問題轉化為對任意恒成立,換元構造新函數(shù)即可得解;(2)結合(1)可得,令,求導后證明其導函數(shù)單調遞增,結合,即可得函數(shù)的單調區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數(shù),又,當時,;當時,,在上是減函數(shù),在上是增函數(shù),,即,.本題考查了利用導數(shù)解決恒成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC TR 61850-7-6:2024 EN Communication networks and systems for power utility automation - Part 7-6: Guideline for definition of Basic Application Profiles (BAPs) using IEC
- 2025-2030年中國鍍鋅層鈍化劑行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國鉛酸蓄電池行業(yè)市場現(xiàn)狀分析規(guī)劃研究報告
- 2025-2030年中國針織服裝市場市場運行動態(tài)及投資戰(zhàn)略研究報告
- 2025-2030年中國酮洛芬腸溶膠囊行業(yè)十三五規(guī)劃與發(fā)展趨勢分析報告
- 2025-2030年中國艾灸養(yǎng)生儀產業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國美甲行業(yè)運行現(xiàn)狀及發(fā)展前景分析報告
- 2025年四川省建筑安全員C證考試(專職安全員)題庫及答案
- 皖北衛(wèi)生職業(yè)學院《時間序列分析》2023-2024學年第二學期期末試卷
- 中央財經大學《商務智能》2023-2024學年第二學期期末試卷
- 新教科版小學1-6年級科學需做實驗目錄
- 《智慧旅游認知與實踐》課件-第九章 智慧旅行社
- 整體機房維護方案及報價通用
- 北大金融學課程表
- 英國簽證戶口本翻譯模板(共4頁)
- 現(xiàn)金調撥業(yè)務
- 空白個人簡歷表格1
- GPIB控制VP-8194D收音信號發(fā)生器指令
- 建立良好師生關系
- 員工預支現(xiàn)金與費用報銷流程
- 唐詩三百首(楷書)
評論
0/150
提交評論