2025年廣東省佛山市禪城實(shí)驗(yàn)高級(jí)中學(xué)高三第二學(xué)期期中數(shù)學(xué)試題含解析_第1頁(yè)
2025年廣東省佛山市禪城實(shí)驗(yàn)高級(jí)中學(xué)高三第二學(xué)期期中數(shù)學(xué)試題含解析_第2頁(yè)
2025年廣東省佛山市禪城實(shí)驗(yàn)高級(jí)中學(xué)高三第二學(xué)期期中數(shù)學(xué)試題含解析_第3頁(yè)
2025年廣東省佛山市禪城實(shí)驗(yàn)高級(jí)中學(xué)高三第二學(xué)期期中數(shù)學(xué)試題含解析_第4頁(yè)
2025年廣東省佛山市禪城實(shí)驗(yàn)高級(jí)中學(xué)高三第二學(xué)期期中數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年廣東省佛山市禪城實(shí)驗(yàn)高級(jí)中學(xué)高三第二學(xué)期期中數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.2.在中,角、、的對(duì)邊分別為、、,若,,,則()A. B. C. D.3.祖暅原理:“冪勢(shì)既同,則積不容異”.意思是說:兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動(dòng)也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.5.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若,則的值為()A. B. C. D.7.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.8.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度9.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對(duì)稱 D.函數(shù)圖像關(guān)于對(duì)稱10.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R(shí),駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個(gè)不同的路口站崗,每個(gè)路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種11.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.12.已知集合,,若,則()A.4 B.-4 C.8 D.-8二、填空題:本題共4小題,每小題5分,共20分。13.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為______.14.學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是___.15.在區(qū)間內(nèi)任意取一個(gè)數(shù),則恰好為非負(fù)數(shù)的概率是________.16.如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面,,點(diǎn)在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.18.(12分)在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.19.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.20.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.21.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.22.(10分)為了加強(qiáng)環(huán)保知識(shí)的宣傳,某學(xué)校組織了垃圾分類知識(shí)竟賽活動(dòng).活動(dòng)設(shè)置了四個(gè)箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷將每張卡片放入對(duì)應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯(cuò)誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè),具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1____,__1__,____1.剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會(huì)有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè).故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題2.B【解析】

利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.本題考查三角形中角的正弦值的計(jì)算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.3.A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.4.C【解析】

首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.5.D【解析】

由復(fù)數(shù)除法運(yùn)算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對(duì)應(yīng)點(diǎn)為,在第四象限.故選:D.本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.6.C【解析】

根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)椋远?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力7.D【解析】

利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8.A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個(gè)單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).三角函數(shù)圖象變換方法:9.C【解析】

依題意可得,即函數(shù)圖像關(guān)于對(duì)稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對(duì)稱,又,在上不單調(diào).故正確的只有C,故選:C本題考查函數(shù)的對(duì)稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.10.C【解析】

先將甲、乙兩人看作一個(gè)整體,當(dāng)作一個(gè)元素,再將這四個(gè)元素分成3個(gè)部分,每一個(gè)部分至少一個(gè),再將這3部分分配到3個(gè)不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【詳解】把甲、乙兩名交警看作一個(gè)整體,個(gè)人變成了4個(gè)元素,再把這4個(gè)元素分成3部分,每部分至少有1個(gè)人,共有種方法,再把這3部分分到3個(gè)不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.11.A【解析】

若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過點(diǎn),分別畫出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.12.B【解析】

根據(jù)交集的定義,,可知,代入計(jì)算即可求出.【詳解】由,可知,又因?yàn)椋詴r(shí),,解得.故選:B.本題考查交集的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.14.C【解析】

假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對(duì)的人數(shù).【詳解】分別獲獎(jiǎng)的說對(duì)人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對(duì)錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對(duì)錯(cuò)丙對(duì)錯(cuò)對(duì)錯(cuò)丁對(duì)錯(cuò)錯(cuò)對(duì)說對(duì)人數(shù)3021故獲得一等獎(jiǎng)的作品是C.本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.15.【解析】

先分析非負(fù)數(shù)對(duì)應(yīng)的區(qū)間長(zhǎng)度,然后根據(jù)幾何概型中的長(zhǎng)度模型,即可求解出“恰好為非負(fù)數(shù)”的概率.【詳解】當(dāng)是非負(fù)數(shù)時(shí),,區(qū)間長(zhǎng)度是,又因?yàn)閷?duì)應(yīng)的區(qū)間長(zhǎng)度是,所以“恰好為非負(fù)數(shù)”的概率是.故答案為:.本題考查幾何概型中的長(zhǎng)度模型,難度較易.解答問題的關(guān)鍵是能判斷出目標(biāo)事件對(duì)應(yīng)的區(qū)間長(zhǎng)度.16.【解析】

三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)為,則中線長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,求得平面的法向量為,平面的法向量,設(shè)二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,如圖:則:,,,,:,設(shè)平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設(shè)二面角的平面角為即二面角的正弦值為:.本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計(jì)算能力,屬于中檔題.18.(1);(2).【解析】

(1)在已知極坐標(biāo)方程兩邊同時(shí)乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標(biāo)方程;(2)聯(lián)立直線l的參數(shù)方程與x2=4y由韋達(dá)定理以及參數(shù)的幾何意義和弦長(zhǎng)公式可得弦長(zhǎng)與已知弦長(zhǎng)相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時(shí)乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標(biāo)方程為:x2=4y.(2)聯(lián)立直線l的參數(shù)方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,屬中檔題.19.(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點(diǎn),點(diǎn)到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點(diǎn),則點(diǎn)到曲線的圓心的距離.∵,∴當(dāng)時(shí),d有最大值.又∵P,Q分別為曲線,曲線上動(dòng)點(diǎn),∴的最大值為.20.(1)證明見解析(2)【解析】

(1)取中點(diǎn)為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),,,為,,軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,,,如下圖所示:因?yàn)椋?,,所以,故為等邊三角形,則.連接,因?yàn)椋?,所以為等邊三角形,則.又,所以平面.因?yàn)槠矫妫?(2)由(1)知,因?yàn)槠矫嫫矫?,平面,所以平面,以為原點(diǎn),,,為,,軸建立如圖所示的空間直角坐標(biāo)系,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論