江蘇省淮安市洪澤區(qū)市級名校2021-2022學年中考數學仿真試卷含解析_第1頁
江蘇省淮安市洪澤區(qū)市級名校2021-2022學年中考數學仿真試卷含解析_第2頁
江蘇省淮安市洪澤區(qū)市級名校2021-2022學年中考數學仿真試卷含解析_第3頁
江蘇省淮安市洪澤區(qū)市級名校2021-2022學年中考數學仿真試卷含解析_第4頁
江蘇省淮安市洪澤區(qū)市級名校2021-2022學年中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省淮安市洪澤區(qū)市級名校2021-2022學年中考數學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.2.如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數是()A.4個 B.3個 C.2個 D.1個3.下列多邊形中,內角和是一個三角形內角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形4.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:15.在海南建省辦經濟特區(qū)30周年之際,中央決定創(chuàng)建海南自貿區(qū)(港),引發(fā)全球高度關注.據統(tǒng)計,4月份互聯(lián)網信息中提及“海南”一詞的次數約48500000次,數據48500000科學記數法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1086.若關于x的不等式組無解,則a的取值范圍是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥37.如圖分別是某班全體學生上學時乘車、步行、騎車人數的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結論錯誤的是()A.該班總人數為50 B.步行人數為30C.乘車人數是騎車人數的2.5倍 D.騎車人數占20%8.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個9.如果,那么代數式的值是()A.6 B.2 C.-2 D.-610.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數為()A.34° B.56° C.66° D.54°11.二次函數y=a(x﹣m)2﹣n的圖象如圖,則一次函數y=mx+n的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限12.在平面直角坐標系中,點(2,3)所在的象限是(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據此規(guī)律,第10個圖形有_______個五角星.14.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.15.一個三角形的兩邊長分別為3和6,第三邊長是方程x2-10x+21=0的根,則三角形的周長為______________.16.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,卡片上的數是3的倍數的概率是17.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.18.分解因式:2m2-8=_______________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?20.(6分)現(xiàn)有四張分別標有數字1、2、2、3的卡片,他們除數字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數字不同的概率()A. B. C. D.21.(6分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?22.(8分)如圖,在中,,平分,交于點,點在上,經過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).23.(8分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;(2)聯(lián)結PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.24.(10分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調查;(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應的圓心角的度數;(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數.(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.25.(10分)一名在校大學生利用“互聯(lián)網+”自主創(chuàng)業(yè),銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?26.(12分)如圖,要利用一面墻(墻長為25米)建羊圈,用100米的圍欄圍成總面積為400平方米的三個大小相同的矩形羊圈,求羊圈的邊長AB,BC各為多少米?27.(12分)小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時間x(min)之間的函數圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.2、B【解析】

通過圖象得到、、符號和拋物線對稱軸,將方程轉化為函數圖象交點問題,利用拋物線頂點證明.【詳解】由圖象可知,拋物線開口向下,則,,拋物線的頂點坐標是,拋物線對稱軸為直線,,,則①錯誤,②正確;方程的解,可以看做直線與拋物線的交點的橫坐標,由圖象可知,直線經過拋物線頂點,則直線與拋物線有且只有一個交點,則方程有兩個相等的實數根,③正確;由拋物線對稱性,拋物線與軸的另一個交點是,則④錯誤;不等式可以化為,拋物線頂點為,當時,,故⑤正確.故選:.【點睛】本題是二次函數綜合題,考查了二次函數的各項系數與圖象位置的關系、拋物線對稱性和最值,以及用函數的觀點解決方程或不等式.3、C【解析】

利用多邊形的內角和公式列方程求解即可【詳解】設這個多邊形的邊數為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數為1.故選C.【點睛】本題主要考查的是多邊形的內角和公式,掌握多邊形的內角和公式是解題的關鍵.4、C【解析】

求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,

陰影部分的面積,

空白部分與陰影部分面積之比是::1,

故選C.【點睛】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.5、C【解析】

依據科學記數法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數M記成a×11n(1≤|a|<11,n為整數)的形式,這種記數的方法叫做科學記數法.規(guī)律:(1)當|a|≥1時,n的值為a的整數位數減1;(2)當|a|<1時,n的值是第一個不是1的數字前1的個數,包括整數位上的1.6、A【解析】【分析】利用不等式組取解集的方法,根據不等式組無解求出a的取值范圍即可.【詳解】∵不等式組無解,∴a﹣4≥3a+2,解得:a≤﹣3,故選A.【點睛】本題考查了一元一次不等式組的解集,熟知一元一次不等式組的解集的確定方法“同大取大、同小取小、大小小大中間找、大大小小無處找”是解題的關鍵.7、B【解析】

根據乘車人數是25人,而乘車人數所占的比例是50%,即可求得總人數,然后根據百分比的含義即可求得步行的人數,以及騎車人數所占的比例.【詳解】A、總人數是:25÷50%=50(人),故A正確;B、步行的人數是:50×30%=15(人),故B錯誤;C、乘車人數是騎車人數倍數是:50%÷20%=2.5,故C正確;D、騎車人數所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.8、C【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數形結合的數學思想方法.9、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.10、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.11、A【解析】

由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數圖象與系數的關系,即可得出一次函數y=mx+n的圖象經過第一、二、三象限.【詳解】解:觀察函數圖象,可知:m>0,n>0,∴一次函數y=mx+n的圖象經過第一、二、三象限.故選A.【點睛】本題考查了二次函數的圖象以及一次函數圖象與系數的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.12、A【解析】

根據點所在象限的點的橫縱坐標的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標與象限的關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),第1個圖形有3=22-1個小五角星;第2個圖形有8=32-1個小五角星;第3個圖形有15=42-1個小五角星;…第n個圖形有(n+1)2-1個小五角星.∴第10個圖形有112-1=1個小五角星.14、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.15、2【解析】分析:首先求出方程的根,再根據三角形三邊關系定理,確定第三邊的長,進而求其周長.詳解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三邊的邊長<9,∴第三邊的邊長為1.∴這個三角形的周長是3+6+1=2.故答案為2.點睛:本題考查了解一元二次方程和三角形的三邊關系.已知三角形的兩邊,則第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.16、.【解析】

分別求出從1到6的數中3的倍數的個數,再根據概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,共有6種結果,其中卡片上的數是3的倍數的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數是3的倍數的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數與總情況數之比.17、(14+2)米【解析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據勾股定理求出CE,然后根據同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應用,主要利用了同時同地物高與影長成正比的性質,作輔助線求出AB的影長若全在水平地面上的長BF是解題的關鍵.18、2(m+2)(m-2)【解析】

先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解因式.【詳解】2m2-8,=2(m2-4),=2(m+2)(m-2)【點睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法,十字相乘等方法分解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解析】

(1)根據圖①可得出總工作量為370件,根據圖②可得出乙完成了220件,從而可得出甲5小時完成的工作量;(2)設y甲的函數解析式為y=kx+b,將點(0,0),(5,1)代入即可得出y甲與t的函數關系式;設y乙的函數解析式為y=mx(0≤t≤2),y=cx+d(2<t≤5),將點的坐標代入即可得出函數解析式;(3)聯(lián)立y甲與改進后y乙的函數解析式即可得出答案.【詳解】(1)由圖①得,總工作量為370件,由圖②可得出乙完成了220件,故甲5時完成的工作量是1.(2)設y甲的函數解析式為y=kt(k≠0),把點(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改進前,甲乙每小時完成50件,所以乙每小時完成20件,當0≤t≤2時,可得y乙=20t;當2<t≤5時,設y=ct+d,將點(2,40),(5,220)代入可得:,解得:,故y乙=60t﹣80(2<t≤5).綜上可得:y甲=30t(0≤t≤5);y乙=.(3)由題意得:,解得:t=,故改進后﹣2=小時后乙與甲完成的工作量相等.【點睛】本題考查了一次函數的應用,解題的關鍵是能讀懂函數圖象所表示的信息,另外要熟練掌握待定系數法求函數解析式的知識.20、A【解析】分析:根據題意畫出樹狀圖,從而可以得到兩次兩次抽出的卡片所標數字不同的情況及所有等可能發(fā)生的情況,進而根據概率公式求出兩次抽出的卡片所標數字不同的概率.詳解:由題意可得,兩次抽出的卡片所標數字不同的概率是:,故選:A.點睛:本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數m除以所有等可能發(fā)生的情況數n即可,即.21、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】

(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數,所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數量關系,列出方程組或不等式組解決問題.22、(1)證明見解析;(2)【解析】

(1)連接OD,根據角平分線的定義和等腰三角形的性質可得∠ADO=∠CAD,即可證明OD//AC,進而可得∠ODB=90°,即可得答案;(2)根據圓周角定理可得弧弧弧,即可證明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的長,利用S陰影=S△BOD-S扇形DOE即可得答案.【詳解】(1)連接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半徑,∴是的切線(2)由題意得∵是弧的中點∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【點睛】本題考查的是切線的判定、圓周角定理及扇形面積,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可;在同圓或等圓中,同弧或等弧所對的圓周角相等,都定義這條弧所對的圓心角的一半.熟練掌握相關定理及公式是解題關鍵.23、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點,P為AC的中點,所以點E是△ABC的重心,然后求得BE的長.(2)過點B作BF∥CA交CD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PD⊥AB,D是邊AB的中點,在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點,P為AC的中點,∴點E是△ABC的重心,∴,(2)過點B作BF∥CA交CD的延長線于點F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點,∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點,∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質以及三角函數是解題的關鍵.24、(1)1;(2)詳見解析;(3)750;(4).【解析】

(1)用排球的人數÷排球所占的百分比,即可求出抽取學生的人數;(2)足球人數=學生總人數-籃球的人數-排球人數-羽毛球人數-乒乓球人數,即可補全條形統(tǒng)計圖;(3)計算足球的百分比,根據樣本估計總體,即可解答;(4)利用概率公式計算即可.【詳解】(1)30÷15%=1(人).答:共抽取1名學生進行問卷調查;故答案為1.(2)足球的人數為:1﹣60﹣30﹣24﹣36=50(人),“足球球”所對應的圓心角的度數為360°×0.25=90°.如圖所示:(3)3000×0.25=750(人).答:全校學生喜歡足球運動的人數為750人.(4)畫樹狀圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論