




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省蕪湖市重點中學2025年高考二模數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.2.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.3.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達式為()A. B.C. D.4.設(shè)集合,則()A. B.C. D.5.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.6.已知函數(shù),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.7.已知函數(shù),則()A.1 B.2 C.3 D.48.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為()A. B. C. D.9.已知是虛數(shù)單位,則()A. B. C. D.10.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()11.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學家和數(shù)學愛好者,有些猜想已經(jīng)被數(shù)學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.12.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.14.若,則__________.15.已知全集為R,集合,則___________.16.如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.18.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.20.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.21.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.22.(10分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.2.B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.3.B【解析】
由圖象的頂點坐標求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點應(yīng)對應(yīng)正弦曲線中的點,所以,解得,故函數(shù)表達式為.故選:B.本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.4.B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.5.B【解析】
根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設(shè)直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.6.C【解析】
將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,因為函數(shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.7.C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎(chǔ)題.8.D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.9.B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.10.D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.11.B【解析】
根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.12.C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.14.【解析】
因為,由二倍角公式得到,故得到.故答案為.15.【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.16.32π【解析】
設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過計算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.【詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當平面ABD⊥平面BCD時,當四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當且僅當x時取等號.解得a=2.此時三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學運算能力和空間想象能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18.(1)證明見解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項公式.然后利用累加法求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項公式,考查錯位相減求和法,屬于中檔題.19.(1);(2)證明見解析【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.20.(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導后根據(jù)導函數(shù)的符號判斷單調(diào)性.(Ⅱ)分析題意可得對任意,恒成立,構(gòu)造函數(shù),則有對任意,恒成立,然后通過求函數(shù)的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數(shù)在上單調(diào)遞增;當時,令,解得;令,解得.故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.綜上,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(II)由題意知.,當時,函數(shù)單調(diào)遞增.不妨設(shè),又函數(shù)單調(diào)遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調(diào)遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調(diào)遞增,所以函數(shù)在上的最大值為.由,解得.故實數(shù)的最小值為.21.(1);(2)見解析【解析】
(1)根據(jù)拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標,進而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設(shè),,則,根據(jù)直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼鏡行業(yè)視力問題免責協(xié)議
- 杭州市房屋裝修合同
- 掛靠物業(yè)公司合伙協(xié)議書
- 工程合同付款方式
- 泥工家裝裝修合同
- 租金遞增式商鋪租賃合同
- 垃圾焚燒發(fā)電項目投資合同
- 場地租賃協(xié)議注意事項
- 質(zhì)押擔保借款合同
- 優(yōu)化員工績效管理系統(tǒng)的具體實施方案
- 2025年01月福建省福利彩票發(fā)行中心片區(qū)管理員招考筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 健身新人直播流程
- 企業(yè)的生產(chǎn)過程課件
- JGJ46-2024 建筑與市政工程施工現(xiàn)場臨時用電安全技術(shù)標準
- 2024年世界職業(yè)院校技能大賽高職組“關(guān)務(wù)實務(wù)組”賽項參考試題庫(含答案)
- 企業(yè)動火作業(yè)安全管理制度范文
- 2024年新疆公務(wù)員考試申論試題(縣鄉(xiāng)卷)
- 自來水企業(yè)安全教育培訓
- 河北美術(shù)出版社小學六年級下冊書法練習指導教案
- T-TBD 004-2024 土壤調(diào)理劑標準規(guī)范
- 人民醫(yī)院2024年度中層干部考核方案
評論
0/150
提交評論