版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省濰坊諸城市第七中學2021-2022學年中考一模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣12.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°3.把不等式組的解集表示在數(shù)軸上,下列選項正確的是()A. B.C. D.4.如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.805.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm26.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+317.某體育用品商店一天中賣出某種品牌的運動鞋15雙,其中各種尺碼的鞋的銷售量如表所示:鞋的尺碼/cm2323.52424.525銷售量/雙13362則這15雙鞋的尺碼組成的一組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別為()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,248.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm9.某共享單車前a公里1元,超過a公里的,每公里2元,若要使使用該共享單車50%的人只花1元錢,a應(yīng)該要取什么數(shù)()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差10.用教材中的計算器依次按鍵如下,顯示的結(jié)果在數(shù)軸上對應(yīng)點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B11.若△÷,則“△”可能是()A. B. C. D.12.如果關(guān)于x的分式方程有負分數(shù)解,且關(guān)于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學》和《古代世界數(shù)學泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.14.閱讀下面材料:在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:已知:求作:的內(nèi)切圓.小明的作法如下:如圖2,作,的平分線BE和CF,兩線相交于點O;過點O作,垂足為點D;
點O為圓心,OD長為半徑作所以,即為所求作的圓.請回答:該尺規(guī)作圖的依據(jù)是______.15.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.16.如圖,矩形中,,,將矩形沿折疊,點落在點處.則重疊部分的面積為______.17.因式分解:-2x2y+8xy-6y=__________.18.計算:﹣|﹣2|+()﹣1=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表.
請根據(jù)所給信息,解答以下問題:
表中___;____請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);
已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.20.(6分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調(diào)查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個不完整統(tǒng)計圖.請根據(jù)圖中所提供的信息,完成下列問題:(1)本次被調(diào)查的學生的人數(shù)為;(2)補全條形統(tǒng)計圖(3)扇形統(tǒng)計圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.21.(6分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.22.(8分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?23.(8分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).24.(10分)老師布置了一個作業(yè),如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學寫出了如圖2所示的證明過程,老師說該同學的作業(yè)是錯誤的.請你解答下列問題:能找出該同學錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.25.(10分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.求反比例函數(shù)y=的表達式;求點B的坐標;求△OAP的面積.26.(12分)如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.27.(12分)如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結(jié)分析報告》中稱:山西春節(jié)旅游供需兩旺,實現(xiàn)了“旅游接待”與“經(jīng)濟效益”的雙豐收,請根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內(nèi)外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關(guān),達到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預(yù)估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術(shù)”、“國粹京劇”、“陶瓷藝術(shù)”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術(shù)”的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)正比例函數(shù)圖象與系數(shù)的關(guān)系列出關(guān)于k的不等式k+1<0,然后解不等式即可.【詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【點睛】本題主要考查正比例函數(shù)圖象在坐標平面內(nèi)的位置與k的關(guān)系.解答本題注意理解:直線y=kx所在的位置與k的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時,直線必經(jīng)過二、四象限,y隨x的增大而減?。?、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).3、C【解析】
求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.4、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.5、C【解析】
已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.【詳解】根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關(guān)鍵.6、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.7、A【解析】【分析】根據(jù)眾數(shù)和中位數(shù)的定義進行求解即可得.【詳解】這組數(shù)據(jù)中,24.5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,所以眾數(shù)為24.5,這組數(shù)據(jù)一共有15個數(shù),按從小到大排序后第8個數(shù)是24.5,所以中位數(shù)為24.5,故選A.【點睛】本題考查了眾數(shù)、中位數(shù),熟練掌握中位數(shù)、眾數(shù)的定義以及求解方法是解題的關(guān)鍵.8、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.9、B【解析】解:根據(jù)中位數(shù)的意義,故只要知道中位數(shù)就可以了.故選B.10、A【解析】試題分析:在計算器上依次按鍵轉(zhuǎn)化為算式為﹣=-1.414…;計算可得結(jié)果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸11、A【解析】
直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關(guān)鍵.12、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質(zhì),屬于中考??碱}型.14、到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【解析】
根據(jù)三角形的內(nèi)切圓,三角形的內(nèi)心的定義,角平分線的性質(zhì)即可解答.【詳解】解:該尺規(guī)作圖的依據(jù)是到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線;故答案為到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【點睛】此題主要考查了復(fù)雜作圖,三角形的內(nèi)切圓與內(nèi)心,關(guān)鍵是掌握角平分線的性質(zhì).15、【解析】
過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.16、10【解析】
根據(jù)翻折的特點得到,.設(shè),則.在中,,即,解出x,再根據(jù)三角形的面積進行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設(shè),則.在中,,即,解得,∴,∴.【點睛】此題主要考查勾股定理,解題的關(guān)鍵是熟知翻折的性質(zhì)及勾股定理的應(yīng)用.17、-2y(x-1)(x-3)【解析】分析:提取公因式法和十字相乘法相結(jié)合因式分解即可.詳解:原式故答案為點睛:本題主要考查因式分解,熟練掌握提取公因式法和十字相乘法是解題的關(guān)鍵.分解一定要徹底.18、﹣1【解析】
根據(jù)立方根、絕對值及負整數(shù)指數(shù)冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數(shù)的混合運算,解題的關(guān)鍵是掌握運算法則及運算順序.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)0.3,45;(2);(3)【解析】
(1)根據(jù)頻數(shù)的和為樣本容量,頻率的和為1,可直接求解;(2)根據(jù)頻率可得到百分比,乘以360°即可;(3)列出相應(yīng)的可能性表格,找到所發(fā)生的所有可能和符合條件的可能求概率即可.【詳解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列關(guān)系表格為:由表格可知,滿足題意的概率為:.考點:1、頻數(shù)分布表,2、扇形統(tǒng)計圖,3、概率20、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補全條形圖;
(3)用360°乘以C類人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),
補全條形圖如下:
(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計該校喜愛C,D兩類校本課程的學生共有840名.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解題關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).21、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.②CE+CF=BC(3)【解析】
(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關(guān)系(3)連接BD與AC交于點H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點睛】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì),相似三角形的判定和性質(zhì)等知識的綜合運用,解題的關(guān)鍵是靈活運用這些知識解決問題,學會添加輔助線構(gòu)造相似三角形.22、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設(shè)可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據(jù)總價=單價×數(shù)量結(jié)合A、B兩種文具的進價及總價,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì),即可解決最值問題.【詳解】(1)設(shè)A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設(shè)購進A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當a=48時W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【點睛】本題主要考查了一次函數(shù)的實際問題,熟練掌握一次函數(shù)表達式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關(guān)鍵.23、(1)證明見解析;(2).【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)根據(jù)SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內(nèi)角的關(guān)系就可以得出結(jié)論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.24、(1)能,見解析;(2)見解析.【解析】
(1)直接利用菱形的判定方法分析得出答案;
(2)直接利用全等三角形的判定與性質(zhì)得出EO=FO,進而得出答案.【詳解】解:(1)能;該同學錯在AC和EF并不是互相平分的,EF垂直平分AC,但未證明AC垂直平分EF,需要通過證明得出;(2)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠FAC=∠ECA.∵EF是AC的垂直平分線,∴OA=OC.∵在△AOF與△COE中,,∴△AOF≌△COE(ASA).∴EO=FO.∴AC垂直平分EF.∴EF與AC互相垂直平分.∴四邊形AECF是菱形.【點睛】本題主要考查了平行四邊形的性質(zhì),菱形的判定,全等三角形的判定與性質(zhì),正確得出全等三角形是解題關(guān)鍵.25、(1)反比例函數(shù)解析式為y=;(2)點B的坐標為(9,3);(3)△OAP的面積=1.【解析】
(1)將點A的坐標代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點B的坐標;(3)先根據(jù)點B坐標得出OB所在直線解析式,從而求得直線與雙曲線交點P的坐標,再利用割補法求解可得.【詳解】(1)將點A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點A作AC⊥x軸于點C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點B的坐標為(9,3);(3)∵點B坐標為(9,3),∴OB所在直線解析式為y=x,由可得點P坐標為(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 居家保姆雇傭合同書
- 2025年統(tǒng)編版八年級地理上冊月考試卷
- 2025年滬教新版高二數(shù)學上冊階段測試試卷
- 2025年粵人版八年級歷史下冊階段測試試卷
- 遵義職業(yè)技術(shù)學院《西方法律思想史(B)》2023-2024學年第一學期期末試卷
- 2025年牛棚養(yǎng)殖廢棄物回收與處理服務(wù)合同4篇
- 二零二五版門窗行業(yè)標準化安裝服務(wù)合同4篇
- 二零二五版苗木種植與森林防火技術(shù)服務(wù)合同3篇
- 2025年度新型木門材料研發(fā)與市場拓展合作合同3篇
- 二零二五版木托盤生產(chǎn)設(shè)備進出口合同4篇
- 七年級英語閱讀理解55篇(含答案)
- 臨床常見操作-灌腸
- 基于視覺的工業(yè)缺陷檢測技術(shù)
- 案例分析:美國紐約高樓防火設(shè)計課件
- 老客戶維護方案
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)一 用戶定位與選題
- 萬科物業(yè)管理公司全套制度(2016版)
- 2021年高考化學真題和模擬題分類匯編專題20工業(yè)流程題含解析
- 工作證明模板下載免費
- (完整word)長沙胡博士工作室公益發(fā)布新加坡SM2考試物理全真模擬試卷(附答案解析)
- 機械點檢員職業(yè)技能知識考試題庫與答案(900題)
評論
0/150
提交評論