吉林省白城市大安市2025年初三第一次四校聯(lián)考數(shù)學試題含解析_第1頁
吉林省白城市大安市2025年初三第一次四校聯(lián)考數(shù)學試題含解析_第2頁
吉林省白城市大安市2025年初三第一次四校聯(lián)考數(shù)學試題含解析_第3頁
吉林省白城市大安市2025年初三第一次四校聯(lián)考數(shù)學試題含解析_第4頁
吉林省白城市大安市2025年初三第一次四校聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省白城市大安市2025年初三第一次四校聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.2.下列計算中,正確的是()A.a?3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a3.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④4.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.5.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣6.中國古代在利用“計里畫方”(比例縮放和直角坐標網(wǎng)格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.7.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°8.3的倒數(shù)是()A. B. C. D.9.如圖,三棱柱ABC﹣A1B1C1的側棱長和底面邊長均為2,且側棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(左)視圖的面積為()A. B. C. D.410.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是()12.已知實數(shù)m,n滿足,,且,則=.13.如圖,每一幅圖中有若干個大小不同的菱形,第1幅圖中有1個,第2幅圖中有3個,第3幅圖中有5個,則第4幅圖中有_____個,第n幅圖中共有_____個.14.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發(fā),勻速行駛,甲出發(fā)1小時后乙再出發(fā),乙以2km/h的速度度勻速行駛1小時后提高速度并繼續(xù)勻速行駛,結果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關系如圖所示,則甲出發(fā)_____小時后和乙相遇.15.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.16.如果梯形的中位線長為6,一條底邊長為8,那么另一條底邊長等于__________.三、解答題(共8題,共72分)17.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.求AB的長(精確到0.1米,參考數(shù)據(jù):);已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.18.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.(1)如圖,點D在線段CB上時,①求證:△AEF≌△ADC;②連接BE,設線段CD=x,BE=y,求y2﹣x2的值;(2)當∠DAB=15°時,求△ADE的面積.19.(8分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.20.(8分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.21.(8分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.22.(10分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)23.(12分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.24.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)k>0,k<0,結合兩個函數(shù)的圖象及其性質分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.2、C【解析】

根據(jù)同底數(shù)冪的運算法則進行判斷即可.【詳解】解:A、a?3a=3a2,故原選項計算錯誤;B、2a+3a=5a,故原選項計算錯誤;C、(ab)3=a3b3,故原選項計算正確;D、7a3÷14a2=a,故原選項計算錯誤;故選C.本題考點:同底數(shù)冪的混合運算.3、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.4、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ5、D【解析】

利用概率公式,一一判斷即可解決問題.【詳解】A、錯誤.小明還有可能是平;B、錯誤、小明勝的概率是

,所以輸?shù)母怕适且彩?;C、錯誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.本題考查列表法、樹狀圖等知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.7、C【解析】

根據(jù)非負數(shù)的性質可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.8、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質:負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).9、B【解析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側棱長,把相關數(shù)值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關鍵是得到求左視圖的面積的等量關系,難點是得到側面積的寬度.10、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、C【解析】

先證明△BPE∽△CDP,再根據(jù)相似三角形對應邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質;3.二次函數(shù)的圖象.12、.【解析】試題分析:由時,得到m,n是方程的兩個不等的根,根據(jù)根與系數(shù)的關系進行求解.試題解析:∵時,則m,n是方程3x2﹣6x﹣5=0的兩個不相等的根,∴,.∴原式===,故答案為.考點:根與系數(shù)的關系.13、72n﹣1【解析】

根據(jù)題意分析可得:第1幅圖中有1個,第2幅圖中有2×2-1=3個,第3幅圖中有2×3-1=5個,…,可以發(fā)現(xiàn),每個圖形都比前一個圖形多2個,繼而即可得出答案.【詳解】解:根據(jù)題意分析可得:第1幅圖中有1個.

第2幅圖中有2×2-1=3個.

第3幅圖中有2×3-1=5個.

第4幅圖中有2×4-1=7個.

….

可以發(fā)現(xiàn),每個圖形都比前一個圖形多2個.

故第n幅圖中共有(2n-1)個.

故答案為7;2n-1.點睛:考查規(guī)律型中的圖形變化問題,難度適中,要求學生通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律.14、【解析】

由圖象得出解析式后聯(lián)立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.此題考查一次函數(shù)的應用,關鍵是由圖象得出解析式解答.15、2【解析】

先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.16、4.【解析】

只需根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,進行計算.【詳解】解:根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,則另一條底邊長.故答案為:4本題考查梯形中位線,用到的知識點為:梯形的中位線=(上底+下底)三、解答題(共8題,共72分)17、(1)24.2米(2)超速,理由見解析【解析】

(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.18、(1)①證明見解析;②25;(2)為或50+1.【解析】

(1)①在直角三角形ABC中,由30°所對的直角邊等于斜邊的一半求出AC的長,再由F為AB中點,得到AC=AF=5,確定出三角形ADE為等邊三角形,利用等式的性質得到一對角相等,再由AD=AE,利用SAS即可得證;②由全等三角形對應角相等得到∠AEF為直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y關于x的函數(shù)解析式;(2)分兩種情況考慮:①當點在線段CB上時;②當點在線段CB的延長線上時,分別求出三角形ADE面積即可.【詳解】(1)、①證明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵點F是AB的中點,∴AF=AB=5,∴AC=AF,∵△ADE是等邊三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵點F是AB的中點,∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①當點在線段CB上時,由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面積為;②當點在線段CB的延長線上時,由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,綜上所述,△ADE的面積為或.此題考查了勾股定理,全等三角形的判定與性質,以及等邊三角形的性質,熟練掌握勾股定理是解本題的關鍵.19、(1)-1;(2).【解析】

(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.20、;.【解析】

(1)由正方形的性質可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;

(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.二次函數(shù)的綜合應用.解題的關鍵是:在(1)中確定出B、C的坐標是解題的關鍵,在(2)中把四邊形轉化成兩個三角形.21、(1)26°;(2)1.【解析】試題分析:(1)根據(jù)垂徑定理,得到,再根據(jù)圓周角與圓心角的關系,得知∠E=∠O,據(jù)此即可求出∠DEB的度數(shù);(2)由垂徑定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的長.試題解析:(1)∵AB是⊙O的一條弦,OD⊥AB,∴,∴∠DEB=∠AOD=×52°=26°;(2)∵AB是⊙O的一條弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,則AB=2AC=1.考點:垂徑定理;勾股定理;圓周角定理.22、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

(1)直接利用銳角三角函數(shù)關系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論