廣西柳州市重點達標名校2024年中考數(shù)學模試卷含解析_第1頁
廣西柳州市重點達標名校2024年中考數(shù)學模試卷含解析_第2頁
廣西柳州市重點達標名校2024年中考數(shù)學模試卷含解析_第3頁
廣西柳州市重點達標名校2024年中考數(shù)學模試卷含解析_第4頁
廣西柳州市重點達標名校2024年中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西柳州市重點達標名校2024年中考數(shù)學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,AB=AC,BC=12cm,點D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點E、F分別落在邊AB、BC上,則△EBF的周長是()cm.A.7 B.11 C.13 D.162.的倒數(shù)的絕對值是()A. B. C. D.3.實數(shù)a、b在數(shù)軸上的對應(yīng)點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<04.用尺現(xiàn)作圖的方法在一個平行四邊形內(nèi)作菱形,下列作法錯誤的是()A. B. C. D.5.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.6.世界上最小的開花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質(zhì)量只有0.0000000076克,將數(shù)0.0000000076用科學記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1087.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.118.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.19.的相反數(shù)是A. B.2 C. D.10.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.511.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.12.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_____.14.如果一個正多邊形的中心角為72°,那么這個正多邊形的邊數(shù)是.15.若關(guān)于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.16.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個圓心角為90°的扇形,將剪下的扇形圍成一個圓錐,圓錐的高是_________m.17.如圖,已知AB∥CD,若,則=_____.18.如圖,數(shù)軸上點A所表示的實數(shù)是________________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點P.在地面A處測得點M的仰角為58°、點N的仰角為45°,在B處測得點M的仰角為31°,AB=5米,且A、B、P三點在一直線上.請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)20.(6分)某區(qū)域平面示意圖如圖,點O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈21.(6分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關(guān)于x的函數(shù)關(guān)系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.22.(8分)為響應(yīng)國家“厲行節(jié)約,反對浪費”的號召,某班一課外活動小組成員在全校范圍內(nèi)隨機抽取了若干名學生,針對“你每天是否會節(jié)約糧食”這個問題進行了調(diào)查,并將調(diào)查結(jié)果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統(tǒng)計圖(如圖)(1)這次被抽查的學生共有______人,扇形統(tǒng)計圖中,“A組”所對應(yīng)的圓心度數(shù)為______;(2)補全兩個統(tǒng)計圖;(3)如果該校學生共有2000人,請估計“每天都會節(jié)約糧食”的學生人數(shù);(4)若不節(jié)約零食造成的浪費,按平均每人每天浪費5角錢計算,小江認為,該校學生一年(365天)共將浪費:2000×20%×0.5×365=73000(元),你認為這種說法正確嗎?并說明理由.23.(8分)某數(shù)學興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設(shè)計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.24.(10分)黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?25.(10分)已知,關(guān)于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.26.(12分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.27.(12分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點,且,過點O作OE⊥AC于點E⊙O的切線AF交OE的延長線于點F,弦AC、BD的延長線交于點G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

直接利用平移的性質(zhì)得出EF=DC=4cm,進而得出BE=EF=4cm,進而求出答案.【詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長為:4+4+5=13(cm).故選C.【點睛】此題主要考查了平移的性質(zhì),根據(jù)題意得出BE的長是解題關(guān)鍵.2、D【解析】

直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).3、C【解析】

直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側(cè),b在原點右側(cè),∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.4、A【解析】

根據(jù)菱形的判定方法一一判定即可【詳解】作的是角平分線,只能說明四邊形ABCD是平行四邊形,故A符合題意B、作的是連接AC,分別做兩個角與已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四邊形ABCD為菱形,B不符合題意C、由輔助線可知AD=AB=BC,又AD∥BC,所以四邊形ABCD為菱形,C不符合題意D、作的是BD垂直平分線,由平行四邊形中心對稱性質(zhì)可知AC與BD互相平分且垂直,得到四邊形ABCD是菱形,D不符合題意故選A【點睛】本題考查平行四邊形的判定,能理解每個圖的作法是本題解題關(guān)鍵5、D【解析】

根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【點睛】本題主要考查函數(shù)模型及其應(yīng)用.6、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:將0.0000000076用科學計數(shù)法表示為.故選A.【點睛】本題考查了用科學計數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個不為0的數(shù)字前面的0的個數(shù)所決定.7、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關(guān)于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關(guān)鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.8、C【解析】

延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉(zhuǎn)60°得到△ABB′是等邊三角形是解本題的關(guān)鍵.9、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.10、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B11、D【解析】

根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.12、D【解析】

根據(jù)圖象可設(shè)二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.14、5【解析】試題分析:中心角的度數(shù)=,考點:正多邊形中心角的概念.15、m>-1【解析】

首先解關(guān)于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關(guān)于m的不等式,求得m的范圍.【詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據(jù)題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【點睛】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關(guān)鍵是把m當作已知數(shù)表示出x+y的值,再得到關(guān)于m的不等式.16、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進而求出扇形圍成的圓錐的底面半徑是多少;最后應(yīng)用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點O是BC的中點,∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點睛:考查圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來扇形之間的關(guān)系式解決本題的關(guān)鍵.17、【解析】【分析】利用相似三角形的性質(zhì)即可解決問題;【詳解】∵AB∥CD,∴△AOB∽△COD,∴,故答案為.【點睛】本題考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.18、【解析】

A點到-1的距離等于直角三角形斜邊的長度,應(yīng)用勾股定理求解出直角三角形斜邊長度即可.【詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數(shù)為:﹣1+【點睛】本題考查了利用勾股定理求解數(shù)軸上點所表示的數(shù).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、1.8米【解析】

設(shè)PA=PN=x,Rt△APM中求得=1.6x,在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.【詳解】在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,,設(shè)PA=PN=x,∵∠MAP=58°,∴=1.6x,在Rt△BPM中,,∵∠MBP=31°,AB=5,∴,∴x=3,∴MN=MP-NP=0.6x=1.8(米),答:廣告牌的寬MN的長為1.8米.【點睛】熟練掌握三角函數(shù)的定義并能夠靈活運用是解題的關(guān)鍵.20、點O到BC的距離為480m.【解析】

作OM⊥BC于M,ON⊥AC于N,設(shè)OM=x,根據(jù)矩形的性質(zhì)用x表示出OM、MC,根據(jù)正切的定義用x表示出BM,根據(jù)題意列式計算即可.【詳解】作OM⊥BC于M,ON⊥AC于N,則四邊形ONCM為矩形,∴ON=MC,OM=NC,設(shè)OM=x,則NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,則MC=ON=840﹣x,在Rt△BOM中,BM==x,由題意得,840﹣x+x=500,解得,x=480,答:點O到BC的距離為480m.【點睛】本題考查的是解直角三角形的應(yīng)用,掌握銳角三角函數(shù)的定義、正確標注方向角是解題的關(guān)鍵.21、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】

(1)設(shè)每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意列出方程組求解,(2)①據(jù)題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數(shù),所以x取34,y取最大值,(3)據(jù)題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設(shè)每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據(jù)題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據(jù)題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數(shù),∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據(jù)題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數(shù)量滿足33≤x≤70的整數(shù)時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數(shù)的應(yīng)用,二元一次方程組及一元一次不等式的應(yīng)用,解題的關(guān)鍵是根據(jù)一次函數(shù)x值的增大而確定y值的增減情況.22、(1)50,108°(2)見解析;(3)600人;(4)不正確,見解析.【解析】

(1)由C組人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以A組人數(shù)所占比例可得;(2)根據(jù)百分比之和為1求得A組百分比補全圖1,總?cè)藬?shù)乘以B的百分比求得其人數(shù)即可補全圖2;(3)總?cè)藬?shù)乘以樣本中A所占百分比可得;(4)由樣本中浪費糧食的人數(shù)所占比例不是20%即可作出判斷.【詳解】(1)這次被抽查的學生共有25÷50%=50人,扇形統(tǒng)計圖中,“A組”所對應(yīng)的圓心度數(shù)為360°×=108°,故答案為50、108°;(2)圖1中A對應(yīng)的百分比為1-20%-50%=30%,圖2中B類別人數(shù)為50×20%=5,補全圖形如下:(3)估計“每天都會節(jié)約糧食”的學生人數(shù)為2000×30%=600人;(4)不正確,因為在樣本中浪費糧食的人數(shù)所占比例不是20%,所以這種說法不正確.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。瑫r本題還考查了通過樣本來估計總體.23、(1)8m;(2)答案不唯一【解析】

(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點D作DCAB于點C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點睛】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.24、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解析】

(1)設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)設(shè)雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數(shù)為w人,由單人間的數(shù)量在20至30之間(包括20和30),即可得出關(guān)于y的一元一次不等式組,解之即可得出y的取值范圍,再根據(jù)可住師生數(shù)=寢室數(shù)×每間寢室可住人數(shù),可找出w關(guān)于y的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)解:設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數(shù)量的年平均增長率為37.5%.(2)解:設(shè)雙人間有y間,可容納人數(shù)為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數(shù)量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據(jù)題意得:w=2y+20y+121﹣6y=16y+121,∴當y=16時,16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【點睛】本題考查了一元二次方程的應(yīng)用、一元一次不等式組的應(yīng)用以及一次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)找準等量關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論