




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省昭通市昭陽區(qū)蘇家院鄉(xiāng)中學2024-2025學年高中畢業(yè)班第三次診斷性檢測試題數(shù)學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)2.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.3.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形4.為弘揚傳統(tǒng)文化,某校初二年級舉辦傳統(tǒng)文化進校園朗誦大賽,小明同學根據(jù)比賽中九位評委所給的某位參賽選手的分數(shù),制作了一個表格,如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()中位數(shù)眾數(shù)平均數(shù)方差9.29.39.10.3A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差5.下列四個不等式組中,解集在數(shù)軸上表示如圖所示的是()A. B. C. D.6.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π7.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′8.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a49.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.10.下列命題是真命題的是()A.如實數(shù)a,b滿足a2=b2,則a=bB.若實數(shù)a,b滿足a<0,b<0,則ab<0C.“購買1張彩票就中獎”是不可能事件D.三角形的三個內角中最多有一個鈍角11.在同一直角坐標系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.12.在,,則的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.14.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.15.當2≤x≤5時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為_____.16.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數(shù)量(單位:瓶)是B飲料數(shù)量的2倍,B飲料的數(shù)量(單位:瓶)是C飲料數(shù)量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發(fā)生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.17.如圖,平行四邊形ABCD中,AB=AC=4,AB⊥AC,O是對角線的交點,若⊙O過A、C兩點,則圖中陰影部分的面積之和為_____.18.如圖,在四個小正方體搭成的幾何體中,每個小正方體的棱長都是1,則該幾何體的三視圖的面積之和是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=ax2+bx+c與x軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.(1)求拋物線解析式;(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標;若不存在,請說明理由;(3)坐標平面內是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標,并求出平行四邊形的面積.20.(6分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,∠EAD=45°,將△ADC繞點A順時針旋轉90°,得到△AFB,連接EF.求證:EF=ED;若AB=2,CD=1,求FE的長.21.(6分)如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.22.(8分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大?。唬á颍┤簟螪=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.23.(8分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.24.(10分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發(fā)運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?25.(10分)某校初三進行了第三次模擬考試,該校領導為了了解學生的數(shù)學考試情況,抽樣調查了部分學生的數(shù)學成績,并將抽樣的數(shù)據(jù)進行了如下整理.(1)填空_______,_______,數(shù)學成績的中位數(shù)所在的等級_________.(2)如果該校有1200名學生參加了本次模擬測,估計等級的人數(shù);(3)已知抽樣調查學生的數(shù)學成績平均分為102分,求A級學生的數(shù)學成績的平均分數(shù).①如下分數(shù)段整理樣本等級等級分數(shù)段各組總分人數(shù)48435741712②根據(jù)上表繪制扇形統(tǒng)計圖26.(12分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;(2)參考(1)中構造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.27.(12分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發(fā)現(xiàn)規(guī)律④教師讓學生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調查教學效果,八年級教師將上述教學方法作為調研內容發(fā)到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變?yōu)橄喾磾?shù).【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.2、D【解析】
從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,∴D是該幾何體的主視圖.故選D.本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.3、B【解析】
根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;
B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;
C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;
D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.
故選:B.本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、A【解析】
根據(jù)中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案.【詳解】如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選A.點睛:本題主要考查了中位數(shù),關鍵是掌握中位數(shù)定義.5、D【解析】
此題涉及的知識點是不等式組的表示方法,根據(jù)規(guī)律可得答案.【詳解】由解集在數(shù)軸上的表示可知,該不等式組為,故選D.本題重點考查學生對于在數(shù)軸上表示不等式的解集的掌握程度,不等式組的解集的表示方法:大小小大取中間是解題關鍵.6、D【解析】
點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.本題考查了矩形的性質、特殊角的三角函數(shù)值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.7、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.8、C【解析】
根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關鍵.9、B【解析】
解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.10、D【解析】
A.兩個數(shù)的平方相等,這兩個數(shù)不一定相等,有正負之分即可判斷B.同號相乘為正,異號相乘為負,即可判斷C.“購買1張彩票就中獎”是隨機事件即可判斷D.根據(jù)三角形內角和為180度,三個角中不可能有兩個以上鈍角即可判斷【詳解】如實數(shù)a,b滿足a2=b2,則a=±b,A是假命題;數(shù)a,b滿足a<0,b<0,則ab>0,B是假命題;若實“購買1張彩票就中獎”是隨機事件,C是假命題;三角形的三個內角中最多有一個鈍角,D是真命題;故選:D本題考查了命題與定理,根據(jù)實際判斷是解題的關鍵11、D【解析】
根據(jù)k值的正負性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關鍵.12、A【解析】
本題可以利用銳角三角函數(shù)的定義求解即可.【詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.本題考查了正切函數(shù)的概念,掌握直角三角形中角的對邊與鄰邊的比是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、12.【解析】
設AD=a,則AB=OC=2a,根據(jù)點D在反比例函數(shù)y=的圖象上,可得D點的坐標為(a,),所以OA=;過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質求得x=,即可得點E的坐標為(,),根據(jù)點E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設AD=a,則AB=OC=2a,∵點D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.本題是反比例函數(shù)與幾何的綜合題,求得點E的坐標為(,)是解決問題的關鍵.14、3【解析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.15、1.【解析】
先根據(jù)二次函數(shù)的圖象和性質判斷出2≤x≤5時的增減性,然后再找最大值即可.【詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為1,故答案為:1.本題主要考查二次函數(shù)在一定范圍內的最大值,掌握二次函數(shù)的圖象和性質是解題的關鍵.16、950【解析】
設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【詳解】解:設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數(shù)量為1.5x瓶,則B飲料數(shù)量為3.2x瓶,A飲料數(shù)量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發(fā)生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數(shù)倍,所以這起錯單發(fā)生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.本題考查一元一次方程的實際應用,解題的關鍵是由題意得到等量關系.17、1.【解析】
∵∠AOB=∠COD,∴S陰影=S△AOB.∵四邊形ABCD是平行四邊形,∴OA=AC=×1=2.∵AB⊥AC,∴S陰影=S△AOB=OA?AB=×2×1=1.本題考查了扇形面積的計算.18、1【解析】
根據(jù)三視圖的定義求解即可.【詳解】主視圖是第一層是三個小正方形,第二層右邊一個小正方形,主視圖的面積是4,俯視圖是三個小正方形,俯視圖的面積是3,左視圖是下邊一個小正方形,第二層一個小正方形,左視圖的面積是2,幾何體的三視圖的面積之和是4+3+2=1,故答案為1.本題考查了簡單組合體的三視圖,利用三視圖的定義是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)點F的坐標為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1【解析】
(1)設拋物線解析式為y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根據(jù)拋物線解析式可知頂點P的坐標,由兩個三角形的底相同可得要使兩個三角形面積相等則高相等,根據(jù)P點坐標可知E點縱坐標,代入解析式求出x的值即可;(3)分別討論AB為邊、AB為對角線兩種情況求出F點坐標并求出面積即可;【詳解】(1)設拋物線解析式為y=ax2+bx+c,將(﹣3,0),(1,0),(0,)代入拋物線解析式得,解得:a=,b=1,c=﹣∴拋物線解析式:y=x2+x﹣(2)存在.∵y=x2+x﹣=(x+1)2﹣2∴P點坐標為(﹣1,﹣2)∵△ABP的面積等于△ABE的面積,∴點E到AB的距離等于2,設E(a,2),∴a2+a﹣=2解得a1=﹣1﹣2,a2=﹣1+2∴符合條件的點E的坐標為(﹣1﹣2,2)或(﹣1+2,2)(3)∵點A(﹣3,0),點B(1,0),∴AB=4若AB為邊,且以A、B、P、F為頂點的四邊形為平行四邊形∴AB∥PF,AB=PF=4∵點P坐標(﹣1,﹣2)∴點F坐標為(3,﹣2),(﹣5,﹣2)∴平行四邊形的面積=4×2=1若AB為對角線,以A、B、P、F為頂點的四邊形為平行四邊形∴AB與PF互相平分設點F(x,y)且點A(﹣3,0),點B(1,0),點P(﹣1,﹣2)∴,∴x=﹣1,y=2∴點F(﹣1,2)∴平行四邊形的面積=×4×4=1綜上所述:點F的坐標為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1.本題考查待定系數(shù)法求二次函數(shù)解析式及二次函數(shù)的幾何應用,分類討論并熟練掌握數(shù)形結合的數(shù)學思想方法是解題關鍵.20、(1)見解析;(2)EF=.【解析】
(1)由旋轉的性質可求∠FAE=∠DAE=45°,即可證△AEF≌△AED,可得EF=ED;(2)由旋轉的性質可證∠FBE=90°,利用勾股定理和方程的思想可求EF的長.【詳解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵將△ADC繞點A順時針旋轉90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=本題考查了旋轉的性質,等腰直角三角形的性質,全等三角形的判定和性質,勾股定理等知識,利用方程的思想解決問題是本題的關鍵.21、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】
(1)將A代入反比例函數(shù)中求出m的值,即可求出直線解析式,(2)聯(lián)立方程組求出B的坐標,理由過兩點之間距離公式求出AB的長,求出P點坐標,表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).本題考查了一次函數(shù)和反比例函數(shù)的交點問題,中等難度,聯(lián)立方程組,會用兩點之間距離公式是解題關鍵.22、(1)∠D=32°;(2)①BE=;②【解析】
(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質即可求出BE的長;②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB考查切線的性質,圓周角定理,等腰直角三角形的判定與性質,含角的等腰直角三角形的性質,三角形的面積公式等,題目比較典型,綜合性比較強,難度適中.23、(3)證明見解析;(3)AB=3.【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據(jù)SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據(jù)全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.本題考查了全等三角形的判定與性質,也考查了等腰直角三角形的性質和勾股定理的應用.考點:3.全等三角形的判定與性質;3.等腰直角三角形.24、(1)t=秒;(1)t=5﹣(s).【解析】
(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據(jù)三角形的面積公式列出方程求解即可.【詳解】解:(1)∵點A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵點P的速度是每秒1個單位,點Q的速度是每秒1個單位,∴AQ=t,AP=10﹣t,①∠APQ是直角時,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角時,△AQP∽△AOB,∴,即,解得t=,綜上所述,t=秒時,△APQ與△AOB相似;(1)如圖,過點P作PC⊥OA于點C,則PC=AP?sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面積=×t×(10﹣t)=8,整理,得:t1﹣1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國亞么膠數(shù)據(jù)監(jiān)測研究報告
- 創(chuàng)新項目實施中的教育內容設計研究
- 技術賦能課堂變革打造高效教學環(huán)境研討會
- 教育政策在醫(yī)療設備研發(fā)中的作用
- 打造智能教育資源體系設計思維的探索與實踐
- 煙草制絲培訓課件
- 公交優(yōu)先戰(zhàn)略2025年對城市交通擁堵治理的影響研究報告
- 浙江警官職業(yè)學院《戲曲劇目研習》2023-2024學年第一學期期末試卷
- 鄭州電力高等??茖W?!缎游锫樽砼c監(jiān)護》2023-2024學年第一學期期末試卷
- 公共衛(wèi)生應急物資儲備體系建設實施方案在2025年的技術創(chuàng)新與應用報告
- GB/T 41574-2022信息技術安全技術公有云中個人信息保護實踐指南
- GB/T 3672.2-2002橡膠制品的公差第2部分:幾何公差
- GB/T 18884.2-2015家用廚房設備第2部分:通用技術要求
- GB/T 12239-2008工業(yè)閥門金屬隔膜閥
- 軍標類型整理文檔
- 山東中醫(yī)藥大學2020-2021學年內科護理學試題及答案1
- DB32T 4174-2021 城市居住區(qū)和單位綠化標準
- 基本原理與性能特點多自由度電磁軸承課件
- Q∕SY 1836-2015 鍋爐 加熱爐燃油(氣)燃燒器及安全聯(lián)鎖保護裝置檢測規(guī)范
- 北京輸變電工程標準工藝應用圖冊(圖文并茂)
- 儀器使用記錄表
評論
0/150
提交評論