




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
資料整理【淘寶店鋪:向陽(yáng)百分百】專題10直線和圓的方程易錯(cuò)點(diǎn)一:使用兩平行線間距離公式忽略系數(shù)相等致錯(cuò)(平行線求距離問(wèn)題)距離問(wèn)題技巧總結(jié)①兩點(diǎn)間的距離:已知SKIPIF1<0則SKIPIF1<0②點(diǎn)到直線的距離:SKIPIF1<0③兩平行線間的距離:兩條平行直線SKIPIF1<0與SKIPIF1<0的距離公式SKIPIF1<0.易錯(cuò)提醒:在求兩條平行線間距離時(shí),先將兩條直線SKIPIF1<0前的系數(shù)統(tǒng)一,然后代入公式求算.例.已知直線SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則(
)A.直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0之間的距離為SKIPIF1<0【詳解】由SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,A對(duì)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,B對(duì)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,顯然不垂直,C錯(cuò)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,由上知,SKIPIF1<0之間的距離為SKIPIF1<0D對(duì).故選:ABD變式1.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與其平行直線l的距離為SKIPIF1<0,則直線l的方程可能為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0設(shè)直線SKIPIF1<0(SKIPIF1<0),依題意得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0所以直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0故選:AB變式2.已知直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,圓C:SKIPIF1<0,下列說(shuō)法正確的是(
)A.若SKIPIF1<0經(jīng)過(guò)圓心C,則SKIPIF1<0B.直線SKIPIF1<0與圓C相離C.若SKIPIF1<0,且它們之間的距離為SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0與圓C相交于M,N,則SKIPIF1<0【詳解】對(duì)于A,因?yàn)閳A心SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0,解得SKIPIF1<0,A正確,對(duì)于B,因?yàn)橹本€SKIPIF1<0恒過(guò)點(diǎn)SKIPIF1<0,且SKIPIF1<0即點(diǎn)SKIPIF1<0在圓C內(nèi),所以SKIPIF1<0與圓C相交,B錯(cuò)誤,對(duì)于C,因?yàn)镾KIPIF1<0,則SKIPIF1<0故SKIPIF1<0與SKIPIF1<0之間的距離SKIPIF1<0,所以SKIPIF1<0,C正確對(duì)于D,SKIPIF1<0時(shí),直線SKIPIF1<0:SKIPIF1<0,即SKIPIF1<0因?yàn)閳A心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,D錯(cuò)誤,故選:AC變式3.已知直線SKIPIF1<0,則(
)A.直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),兩直線SKIPIF1<0之間的距離為1【詳解】依題意,直線SKIPIF1<0,由SKIPIF1<0解得:SKIPIF1<0,因此直線SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0,A不正確當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0,而直線SKIPIF1<0,顯然SKIPIF1<0,即直線SKIPIF1<0不垂直,B不正確當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0,而直線SKIPIF1<0,顯然SKIPIF1<0,即SKIPIF1<0,C正確當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,解得SKIPIF1<0,即直線SKIPIF1<0,因此直線SKIPIF1<0之間的距離SKIPIF1<0,D正確故選:CD1.若直線SKIPIF1<0與SKIPIF1<0之間的距離為SKIPIF1<0,則a的值為(
)A.4 B.SKIPIF1<0 C.4或SKIPIF1<0 D.8或SKIPIF1<0【答案】C【分析】將直線SKIPIF1<0化為SKIPIF1<0,再根據(jù)兩平行直線的距離公式列出方程,求解即可.【詳解】將直線SKIPIF1<0化為SKIPIF1<0,則直線SKIPIF1<0與直線SKIPIF1<0之間的距離SKIPIF1<0,根據(jù)題意可得:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以a的值為SKIPIF1<0或SKIPIF1<0.故選:C2.若兩條直線SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0的四個(gè)交點(diǎn)能構(gòu)成正方形,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】B【分析】由直線方程知SKIPIF1<0,由題意正方形的邊長(zhǎng)等于直線SKIPIF1<0、SKIPIF1<0的距離SKIPIF1<0,又SKIPIF1<0,結(jié)合兩線距離公式即可求SKIPIF1<0的值.【詳解】由題設(shè)知:SKIPIF1<0,要使SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)且構(gòu)成正方形SKIPIF1<0,∴正方形的邊長(zhǎng)等于直線SKIPIF1<0、SKIPIF1<0的距離SKIPIF1<0,則SKIPIF1<0,若圓的半徑為r,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,由正方形的性質(zhì)知:SKIPIF1<0,∴SKIPIF1<0,即有SKIPIF1<0.故選:B.3.兩條平行直線SKIPIF1<0和SKIPIF1<0間的距離為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0分別為(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D【分析】根據(jù)兩直線平行的性質(zhì)可得參數(shù)SKIPIF1<0,再利用平行線間距離公式可得SKIPIF1<0.【詳解】由直線SKIPIF1<0與直線SKIPIF1<0平行,得SKIPIF1<0,解得SKIPIF1<0,所以兩直線分別為SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0,所以兩直線間距離SKIPIF1<0,故選:D.4.兩條平行直線SKIPIF1<0與SKIPIF1<0之間的距離(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.7【答案】C【分析】首先根據(jù)兩條直線平行求出參數(shù)SKIPIF1<0的值,然后利用平行線間的距離公式求解即可.【詳解】由已知兩條直線平行,得SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0可化為SKIPIF1<0,則兩平行線間的距離SKIPIF1<0.故選:C5.已知直線SKIPIF1<0和SKIPIF1<0與圓SKIPIF1<0都相切,則圓SKIPIF1<0的面積的最大值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】易得SKIPIF1<0互相平行,故圓SKIPIF1<0的直徑為SKIPIF1<0間的距離,再表達(dá)出距離求最大值即可得圓SKIPIF1<0的直徑最大值,進(jìn)而得到面積最大值【詳解】由題,SKIPIF1<0互相平行,且SKIPIF1<0,故圓SKIPIF1<0的直徑為SKIPIF1<0間的距離SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)SKIPIF1<0取得最大值SKIPIF1<0,此時(shí)圓SKIPIF1<0的面積為SKIPIF1<0故選:A6.若直線SKIPIF1<0與SKIPIF1<0平行,則SKIPIF1<0與SKIPIF1<0間的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由兩直線平行的判定有SKIPIF1<0且SKIPIF1<0求參數(shù)a,應(yīng)用平行線距離公式求SKIPIF1<0與SKIPIF1<0間的距離.【詳解】∵直線SKIPIF1<0與SKIPIF1<0平行,∴SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0.∴直線SKIPIF1<0與SKIPIF1<0間的距離SKIPIF1<0.故選:B.7.已知直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0),SKIPIF1<0:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0間的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【分析】由直線平行的結(jié)論列方程求SKIPIF1<0,再由平行直線的距離公式求兩直線的距離.【詳解】由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0間的距離為SKIPIF1<0,故選B.8.已知直線SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0之間的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0時(shí)舍去,可得SKIPIF1<0,再利用平行線之間的距離公式即可得出.【詳解】由于兩條直線平行,得SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),兩直線方程都是SKIPIF1<0故兩直線重合,不符合題意.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故兩平行直線的距離為SKIPIF1<0.故選A.【點(diǎn)睛】本題主要考查了直線平行的充要條件及其距離,考查了推理能力與計(jì)算能力,屬于中檔題.9.若兩條平行直線SKIPIF1<0與SKIPIF1<0之間的距離是SKIPIF1<0,則m+n=A.0 B.1 C.-2 D.-1【答案】C【分析】根據(jù)直線平行得到SKIPIF1<0,根據(jù)兩直線的距離公式得到SKIPIF1<0,得到答案.【詳解】由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,即直線SKIPIF1<0,兩直線之間的距離為SKIPIF1<0,解得SKIPIF1<0(SKIPIF1<0舍去),所以SKIPIF1<0故答案選C.【點(diǎn)睛】本題考查了直線平行,兩平行直線之間的距離,意在考查學(xué)生的計(jì)算能力.10.已知直線SKIPIF1<0SKIPIF1<0,則兩條直線之間的距離為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用兩平行直線距離公式即可求得.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,故選C.【點(diǎn)睛】本題考查了兩平行直線距離問(wèn)題,運(yùn)用平行直線距離公式可以求解,但要注意將兩直線一般方程的SKIPIF1<0系數(shù)化為相同的值;也可以在其中一條直線中選取一個(gè)特殊點(diǎn),然后利用點(diǎn)到直線距離公式進(jìn)行求解,屬于基礎(chǔ)題.易錯(cuò)點(diǎn)二:求有關(guān)截距相等問(wèn)題時(shí)易忽略截距為零的情況(直線截距式的考點(diǎn))直線方程的五種形式的比較如下表:名稱方程的形式常數(shù)的幾何意義適用范圍點(diǎn)斜式SKIPIF1<0SKIPIF1<0是直線上一定點(diǎn),k是斜率不垂直于x軸斜截式SKIPIF1<0k是斜率,b是直線在y軸上的截距不垂直于x軸兩點(diǎn)式SKIPIF1<0SKIPIF1<0,SKIPIF1<0是直線上兩定點(diǎn)不垂直于x軸和y軸截距式SKIPIF1<0a是直線在x軸上的非零截距,b是直線在y軸上的非零截距不垂直于x軸和y軸,且不過(guò)原點(diǎn)一般式SKIPIF1<0A、B、C為系數(shù)任何位置的直線給定一般式求截距相等時(shí),具體方案如下:形如:第一種情況SKIPIF1<0第二種情況:SKIPIF1<0截距之和為0時(shí),橫縱截距都為0也是此類模型易錯(cuò)提醒:求截距相等時(shí),往往會(huì)忽略橫縱截距為0的情況從而漏解例.已知直線SKIPIF1<0過(guò)點(diǎn)(2,1)且在x,y軸上的截距相等(1)求直線SKIPIF1<0的一般方程;(2)若直線SKIPIF1<0在x,y軸上的截距不為0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,求SKIPIF1<0的最小值.【詳解】試題分析:(1)當(dāng)截距為0時(shí),得到SKIPIF1<0;當(dāng)截距不為0時(shí)設(shè)直線方程為SKIPIF1<0,代入點(diǎn)坐標(biāo)即可得方程.(2)由第一問(wèn)可得SKIPIF1<0,SKIPIF1<0,由不等式得到結(jié)果.⑴
①SKIPIF1<0即SKIPIF1<0②截距不為0時(shí),設(shè)直線方程為SKIPIF1<0,代入SKIPIF1<0,計(jì)算得SKIPIF1<0,則直線方程為SKIPIF1<0,綜上,直線方程為SKIPIF1<0⑵由題意得SKIPIF1<0SKIPIF1<0變式1.已知直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0且在SKIPIF1<0軸上的截距相等(1)求直線SKIPIF1<0的一般方程;(2)若直線SKIPIF1<0在SKIPIF1<0軸上的截距不為0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,求SKIPIF1<0的最小值.【詳解】(1)因?yàn)橹本€SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0且在SKIPIF1<0軸上的截距相等,當(dāng)截距為0時(shí),則SKIPIF1<0當(dāng)截距不為0時(shí),可設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0綜上,SKIPIF1<0的一般方程:SKIPIF1<0或SKIPIF1<0(2)由題意得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立SKIPIF1<0的最小值為SKIPIF1<0變式2.已知直線SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,其中a,b均不為0.(1)若SKIPIF1<0,且SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,求a,b;(2)若SKIPIF1<0,且SKIPIF1<0在兩坐標(biāo)軸上的截距相等,求SKIPIF1<0與SKIPIF1<0之間的距離.【詳解】(1)當(dāng)SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,于是SKIPIF1<0(2)由SKIPIF1<0:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0因?yàn)镾KIPIF1<0在兩坐標(biāo)軸上的截距相等,所以SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0則SKIPIF1<0:SKIPIF1<0與SKIPIF1<0:SKIPIF1<0之間的距離SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0之間的距離為SKIPIF1<0.變式3.已知直線SKIPIF1<0,直線SKIPIF1<0(1)若直線SKIPIF1<0在兩坐標(biāo)軸上的截距相等,求實(shí)數(shù)SKIPIF1<0的值;(2)若SKIPIF1<0SKIPIF1<0SKIPIF1<0,求直線SKIPIF1<0的方程.【詳解】(1)由題意可知,SKIPIF1<0,直線SKIPIF1<0在SKIPIF1<0軸上的截距為SKIPIF1<0,在SKIPIF1<0軸上的截距為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0(2)若SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,解得:SKIPIF1<0此時(shí)直線SKIPIF1<0的方程為SKIPIF1<01.已知圓SKIPIF1<0為圓O上位于第一象限的一點(diǎn),過(guò)點(diǎn)M作圓O的切線l.當(dāng)l的橫縱截距相等時(shí),l的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用過(guò)圓上點(diǎn)的切線的性質(zhì)可得SKIPIF1<0,利用點(diǎn)SKIPIF1<0表示出切線方程,結(jié)合l的橫縱截距相等,即得解【詳解】由題意,點(diǎn)SKIPIF1<0在第一象限,故過(guò)點(diǎn)M的的切線l斜率存在;點(diǎn)SKIPIF1<0在圓上,故SKIPIF1<0,即SKIPIF1<0SKIPIF1<0故直線l的方程為:SKIPIF1<0令SKIPIF1<0令SKIPIF1<0當(dāng)l的橫縱截距相等時(shí),SKIPIF1<0又SKIPIF1<0解得:SKIPIF1<0即SKIPIF1<0,即SKIPIF1<0故選:A2.“直線SKIPIF1<0在坐標(biāo)軸上截距相等”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】B【分析】由直線SKIPIF1<0在坐標(biāo)軸上截距相等得SKIPIF1<0或SKIPIF1<0,再根據(jù)充分條件和必要條件的定義判斷即可.【詳解】解:由題知:SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0;由SKIPIF1<0得,SKIPIF1<0.因?yàn)樵谧鴺?biāo)軸上的截距相等,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.所以直線SKIPIF1<0在坐標(biāo)軸上截距相等”是“SKIPIF1<0”的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查直線的截距與充分條件、必要條件,屬于基礎(chǔ)題.3.過(guò)點(diǎn)A(1,2)的直線在兩坐標(biāo)軸上的截距之和為零,則該直線方程為(
)A.x-y+1=0 B.x+y-3=0 C.y=2x或x+y-3=0 D.y=2x或x-y+1=0【答案】D【分析】考慮直線是否過(guò)坐標(biāo)原點(diǎn),設(shè)出直線方程,分別求解出直線方程.【詳解】當(dāng)直線過(guò)原點(diǎn)時(shí),其斜率為SKIPIF1<0,故直線方程為y=2x;當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線方程為SKIPIF1<0,代入點(diǎn)(1,2)可得SKIPIF1<0,解得a=-1,故直線方程為x-y+1=0.綜上,可知所求直線方程為y=2x或x-y+1=0,故選:D.【點(diǎn)睛】本題主要考查直線方程的截距式以及分類討論思想的應(yīng)用,考查邏輯推理和數(shù)學(xué)運(yùn)算.在利用直線方程的截距式解題時(shí),一定要注意討論直線的截距是否為零.4.下列說(shuō)法正確的是(
)A.若直線SKIPIF1<0與直線SKIPIF1<0互相垂直,則SKIPIF1<0B.已知SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離分別為SKIPIF1<0和SKIPIF1<0,則滿足條件的直線SKIPIF1<0的條數(shù)是2C.過(guò)SKIPIF1<0,SKIPIF1<0兩點(diǎn)的所有直線的方程為SKIPIF1<0D.經(jīng)過(guò)點(diǎn)SKIPIF1<0且在SKIPIF1<0軸和SKIPIF1<0軸上截距都相等的直線方程為SKIPIF1<0【答案】B【分析】對(duì)于A,利用直線與直線垂直的條件判斷;對(duì)于B,利用點(diǎn)到直線的距離、直線與圓的位置關(guān)系判斷;對(duì)于C,利用兩點(diǎn)式方程判斷;對(duì)于D,利用直線的截距式方程判斷【詳解】解:對(duì)于A,若直線SKIPIF1<0與直線SKIPIF1<0互相垂直,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以A錯(cuò)誤;對(duì)于B,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,分別以點(diǎn)SKIPIF1<0,SKIPIF1<0為圓心,2,4為半徑作圓,因?yàn)镾KIPIF1<0,所以兩圓相交,所以兩圓的公切線有2條,所以滿足條件的直線SKIPIF1<0的條數(shù)是2,所以B正確;對(duì)于C,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),過(guò)SKIPIF1<0,SKIPIF1<0兩點(diǎn)的直線方程為SKIPIF1<0,所以C錯(cuò)誤;對(duì)于D,當(dāng)截距為零時(shí),設(shè)直線方程為SKIPIF1<0,則SKIPIF1<0,所以直線為SKIPIF1<0,當(dāng)截距不為零時(shí),設(shè)直線方程為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以直線方程為SKIPIF1<0,綜上,經(jīng)過(guò)點(diǎn)SKIPIF1<0且在SKIPIF1<0軸和SKIPIF1<0軸上截距都相等的直線方程為SKIPIF1<0或SKIPIF1<0,所以D錯(cuò)誤故選:B5.過(guò)點(diǎn)SKIPIF1<0,且在兩坐標(biāo)軸上的截距相等的直線的方程是A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【詳解】當(dāng)直線過(guò)原點(diǎn)時(shí),直線方程為y=SKIPIF1<0x,即4x﹣3y=0;當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線方程為x+y=a.則3+4=a,得a=7.∴直線方程為x+y﹣7=0.∴過(guò)點(diǎn)M(3,4)且在坐標(biāo)軸上截距相等的直線方程為4x﹣3y=0或x+y﹣7=0.故選:D6.下列命題中錯(cuò)誤的是(
)A.命題“SKIPIF1<0”的否定是“SKIPIF1<0”B.命題“若SKIPIF1<0,則SKIPIF1<0”的否命題為“若SKIPIF1<0,則SKIPIF1<0”C.“兩直線斜率相等”是“兩直線平行”的充要條件D.若“p或q”為假命題,則p,q均為假命題【答案】C【分析】利用含有一個(gè)量詞的命題的否定、否命題的概念、兩直線平行的充要條件以及SKIPIF1<0的真假進(jìn)行判斷.【詳解】對(duì)于A,命題“SKIPIF1<0”的否定是“SKIPIF1<0”,故A正確;對(duì)于B,命題“若SKIPIF1<0,則SKIPIF1<0”的否命題為“若SKIPIF1<0,則SKIPIF1<0”,故B正確;對(duì)于C,若兩直線斜率相等,則兩直線平行或重合;但若兩直線平行,斜率可能不存在,故C錯(cuò)誤;對(duì)于D,若“p或q”為假命題,則p,q均為假命題,故D正確.故選:C.7.與圓SKIPIF1<0相切,且在坐標(biāo)軸上截距相等的直線共有(
)A.2條 B.3條 C.4條 D.6條【答案】A【分析】過(guò)原點(diǎn)的直線不滿足題意,當(dāng)直線不經(jīng)過(guò)原點(diǎn)且與圓相切時(shí),依題意可設(shè)方程為SKIPIF1<0,根據(jù)圓心到直線的距離等于半徑可得SKIPIF1<0有兩解,綜合可得結(jié)果.【詳解】圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為1,由于原點(diǎn)在圓上,顯然過(guò)原點(diǎn)的直線不滿足題意;當(dāng)直線不經(jīng)過(guò)原點(diǎn)且與圓相切時(shí),依題意可設(shè)方程為SKIPIF1<0,圓心到直線的距離SKIPIF1<0,解得SKIPIF1<0,此時(shí)滿足條件的直線有兩條,綜上可得:滿足條件的直線有兩條,故選:A.【點(diǎn)睛】本題主要考查圓的切線方程,截距相等問(wèn)題,學(xué)生容易疏忽過(guò)原點(diǎn)的直線,屬于中檔題.8.已知直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,且與SKIPIF1<0軸、SKIPIF1<0軸分別交于A,B點(diǎn),則(
)A.若直線SKIPIF1<0的斜率為1,則直線SKIPIF1<0的方程為SKIPIF1<0B.若直線SKIPIF1<0在兩坐標(biāo)軸上的截距相等,則直線SKIPIF1<0的方程為SKIPIF1<0C.若M為SKIPIF1<0的中點(diǎn),則SKIPIF1<0的方程為SKIPIF1<0D.直線SKIPIF1<0的方程可能為SKIPIF1<0【答案】AC【分析】根據(jù)直線點(diǎn)斜式判斷A,由過(guò)原點(diǎn)直線滿足題意判斷B,由中點(diǎn)求出A,B坐標(biāo)得直線方程判斷C,由直線與坐標(biāo)軸有交點(diǎn)判斷D.【詳解】對(duì)于A,直線l的斜率為1,則直線l的方程為SKIPIF1<0,即SKIPIF1<0,故A正確;對(duì)于B,當(dāng)直線l在兩坐標(biāo)軸上的截距都為0時(shí),l的方程為SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,因?yàn)橹悬c(diǎn)SKIPIF1<0,且A,B在SKIPIF1<0軸、SKIPIF1<0軸上,所以SKIPIF1<0,SKIPIF1<0,故AB的方程為SKIPIF1<0,即SKIPIF1<0,故C正確;對(duì)于D,直線SKIPIF1<0與x軸無(wú)交點(diǎn),與題意不符,故D錯(cuò)誤.故選:AC.9.已知直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,則下列結(jié)論正確的有(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0在x軸上的截距相等則SKIPIF1<0D.SKIPIF1<0的傾斜角不可能是SKIPIF1<0傾斜角的2倍【答案】AB【分析】根據(jù)直線平行、垂直的條件判斷AB選項(xiàng)的正確性;根據(jù)直線的截距、傾斜角判斷CD選項(xiàng)的正確性.【詳解】若SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,選項(xiàng)A正確;若SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,選項(xiàng)B正確;若SKIPIF1<0,SKIPIF1<0在x軸上的截距相等,則SKIPIF1<0,解得SKIPIF1<0,選項(xiàng)C錯(cuò)誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的傾斜角SKIPIF1<0恰好是SKIPIF1<0的傾斜角SKIPIF1<0的2倍,選項(xiàng)D錯(cuò)誤.故選:AB【點(diǎn)睛】解決此題的關(guān)鍵是要弄清楚直線的點(diǎn)斜式和直線的一般式判斷兩直線平行和垂直的充要條件,其次還要注意斜率的存在性,一定要注意分類討論.易錯(cuò)點(diǎn):兩直線平行一定要注意縱截距不等和斜率的存在性.10.直線SKIPIF1<0與圓SKIPIF1<0相切,且SKIPIF1<0在SKIPIF1<0軸、SKIPIF1<0軸上的截距相等,則直線SKIPIF1<0的方程可能是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】由于直線SKIPIF1<0在SKIPIF1<0軸、SKIPIF1<0軸上的截距相等,設(shè)直線為:SKIPIF1<0或SKIPIF1<0,利用圓心到直線的距離為半徑,即得解【詳解】由于直線SKIPIF1<0在SKIPIF1<0軸、SKIPIF1<0軸上的截距相等,設(shè)直線為:SKIPIF1<0或SKIPIF1<0由于直線SKIPIF1<0與圓SKIPIF1<0相切,故圓心SKIPIF1<0到直線的距離等于半徑SKIPIF1<0SKIPIF1<0或SKIPIF1<0故直線的方程為:SKIPIF1<0故選:ACD易錯(cuò)點(diǎn)三:求有關(guān)圓的切線問(wèn)題易混淆“在”“過(guò)”(求有關(guān)圓的切線問(wèn)題)技巧總結(jié)第一類:求過(guò)圓上一點(diǎn)SKIPIF1<0的圓的切線方程的方法正規(guī)方法:第一步:求切點(diǎn)與圓心的連線所在直線的斜率SKIPIF1<0第二步:利用垂直關(guān)系求出切線的斜率為SKIPIF1<0第三步:利用點(diǎn)斜式SKIPIF1<0求出切線方程注意:若SKIPIF1<0則切線方程為SKIPIF1<0,若SKIPIF1<0不存在時(shí),切線方程為SKIPIF1<0秒殺方法:①經(jīng)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0②經(jīng)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0③經(jīng)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0第二類:求過(guò)圓外一點(diǎn)SKIPIF1<0的圓的切線方程的方法方法一:幾何法第一步:設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0,第二步:由圓心到直線的距離等于半徑長(zhǎng),可求得SKIPIF1<0,切線方程即可求出方法二:代數(shù)法第一步:設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0,第二步:代入圓的方程,得到一個(gè)關(guān)于SKIPIF1<0的一元二次方程,由SKIPIF1<0可求得SKIPIF1<0,切線方程即可求出注意:過(guò)圓外一點(diǎn)的切線必有兩條,當(dāng)上面兩種方法求得的SKIPIF1<0只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可得數(shù)形結(jié)合求出.第三類:求斜率為SKIPIF1<0且與圓相切的切線方程的方法方法一:幾何法第一步:設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0第二步:由圓心到直線的距離等于半徑長(zhǎng),可求得SKIPIF1<0,切線方程即可求出.方法二:代數(shù)法第一步:設(shè)切線方程為SKIPIF1<0,第二步:代入圓的方程,得到一個(gè)關(guān)于SKIPIF1<0的一元二次方程,由SKIPIF1<0可求得SKIPIF1<0,切線方程即可求出方法三:秒殺方法已知圓SKIPIF1<0的切線的斜率為SKIPIF1<0,則圓的切線方程為SKIPIF1<0已知圓SKIPIF1<0的切線的斜率為SKIPIF1<0,則圓的切線方程為SKIPIF1<0工具:點(diǎn)與圓的位置關(guān)系判斷圓的標(biāo)準(zhǔn)方程為SKIPIF1<0一般方程為SKIPIF1<0.①點(diǎn)在圓上:SKIPIF1<0SKIPIF1<0②點(diǎn)在圓外:SKIPIF1<0SKIPIF1<0③點(diǎn)在圓內(nèi):SKIPIF1<0SKIPIF1<0易錯(cuò)提醒:求切線問(wèn)題時(shí)首要任務(wù)確定點(diǎn)與圓的位置關(guān)系并采用對(duì)應(yīng)方案進(jìn)行處理例、圓的方程為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的切線方程解:正規(guī)方法:第一步:求切點(diǎn)與圓心的連線所在直線的斜率SKIPIF1<0SKIPIF1<0第二步:利用垂直關(guān)系求出切線的斜率為SKIPIF1<0SKIPIF1<0第三步:利用點(diǎn)斜式SKIPIF1<0求出切線方程SKIPIF1<0秒殺方法:經(jīng)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0變形1、圓的方程為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的切線方程解:正規(guī)方法:第一步:求切點(diǎn)與圓心的連線所在直線的斜率SKIPIF1<0圓的一般式轉(zhuǎn)化為標(biāo)準(zhǔn)形式為SKIPIF1<0SKIPIF1<0SKIPIF1<0第二步:利用垂直關(guān)系求出切線的斜率為SKIPIF1<0SKIPIF1<0第三步:利用點(diǎn)斜式SKIPIF1<0求出切線方程SKIPIF1<0秒殺方法:經(jīng)過(guò)圓上SKIPIF1<0一點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0變形2、圓的方程為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的切線方程解:由題意的點(diǎn)在圓外方法一:幾何法第一步:設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0,第二步:由圓心到直線的距離等于半徑長(zhǎng),可求得SKIPIF1<0,切線方程即可求出SKIPIF1<0圓心為SKIPIF1<0則SKIPIF1<0故:SKIPIF1<0,SKIPIF1<0方法二:代數(shù)法第一步:設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0,第二步:代入圓的方程,得到一個(gè)關(guān)于SKIPIF1<0的一元二次方程,由SKIPIF1<0可求得SKIPIF1<0,切線方程即可求出SKIPIF1<0SKIPIF1<0故:SKIPIF1<0,SKIPIF1<0變形3、圓的方程為SKIPIF1<0,切線斜率為SKIPIF1<0方程為方法一:幾何法第一步:設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0第二步:由圓心到直線的距離等于半徑長(zhǎng),可求得SKIPIF1<0,切線方程即可求出.SKIPIF1<0故SKIPIF1<0SKIPIF1<0方法二:代數(shù)法第一步:設(shè)切線方程為SKIPIF1<0,第二步:代入圓的方程,得到一個(gè)關(guān)于SKIPIF1<0的一元二次方程,由SKIPIF1<0可求得SKIPIF1<0,切線方程即可求出SKIPIF1<0SKIPIF1<0SKIPIF1<0故SKIPIF1<0SKIPIF1<0方法三:秒殺方法已知圓SKIPIF1<0的切線的斜率為SKIPIF1<0,則圓的切線方程為SKIPIF1<0故SKIPIF1<0SKIPIF1<01.在平面直角坐標(biāo)系中,過(guò)直線SKIPIF1<0上一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題意圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,如圖SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又由圓心到直線的距離可求出SKIPIF1<0的最小值,進(jìn)而求解.【詳解】如下圖所示:
由題意圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,所以不妨設(shè)SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞增,所以當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0,即當(dāng)且僅當(dāng)直線SKIPIF1<0垂直已知直線SKIPIF1<0時(shí),SKIPIF1<0有最大值SKIPIF1<0.故選:A.2.已知點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,過(guò)SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0,則SKIPIF1<0的傾斜角為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)直線垂直的斜率關(guān)系,即可由斜率與傾斜角的關(guān)系求解.【詳解】圓心為SKIPIF1<0,所以SKIPIF1<0,所以過(guò)SKIPIF1<0的切線SKIPIF1<0的斜率為SKIPIF1<0,設(shè)傾斜角為SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,故選:D3.已知圓SKIPIF1<0與直線SKIPIF1<0,P,Q分別是圓C和直線l上的點(diǎn)且直線PQ與圓C恰有1個(gè)公共點(diǎn),則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】SKIPIF1<0,SKIPIF1<0的最小值為圓心SKIPIF1<0到直線的距離,可求SKIPIF1<0的最小值.【詳解】圓SKIPIF1<0化為標(biāo)準(zhǔn)方程為SKIPIF1<0,則圓C的圓心為SKIPIF1<0,半徑SKIPIF1<0,則SKIPIF1<0,直線PQ與圓C相切,有SKIPIF1<0,因?yàn)辄c(diǎn)Q在直線l上,所以SKIPIF1<0,則SKIPIF1<0.即SKIPIF1<0的最小值是SKIPIF1<0.故選:A4.已知直線SKIPIF1<0與圓SKIPIF1<0SKIPIF1<0,過(guò)直線SKIPIF1<0上的任意一點(diǎn)SKIPIF1<0向圓SKIPIF1<0引切線,設(shè)切點(diǎn)為SKIPIF1<0,若線段SKIPIF1<0長(zhǎng)度的最小值為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,而SKIPIF1<0的最小值是圓心到直線的距離,然后列方程可求出實(shí)數(shù)m的值.【詳解】圓SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以圓心SKIPIF1<0到直線SKIPIF1<0的距離是SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:A.5.已知圓SKIPIF1<0,直線SKIPIF1<0,則下列結(jié)論正確的是(
)A.存在實(shí)數(shù)k,使得直線l與圓C相切B.若直線l與圓C交于A,B兩點(diǎn),則SKIPIF1<0的最大值為4C.當(dāng)SKIPIF1<0時(shí),圓C上存在4個(gè)點(diǎn)到直線l的距離為SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),對(duì)任意SKIPIF1<0,曲線SKIPIF1<0恒過(guò)直線SKIPIF1<0與圓C的交點(diǎn)【答案】BCD【分析】根據(jù)直線與圓的位置關(guān)系逐項(xiàng)判斷即可.【詳解】SKIPIF1<0,圓心SKIPIF1<0且半徑為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在圓上,若直線l與圓C相切,則直線l的斜率不存在,即SKIPIF1<0,故A不正確;當(dāng)直線l經(jīng)過(guò)圓心時(shí),SKIPIF1<0取最大值即圓的直徑SKIPIF1<0,故B正確;當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0,因?yàn)閳A心C到直線l的距離SKIPIF1<0,所以SKIPIF1<0,所以圓C上有4個(gè)點(diǎn)到直線的距離為SKIPIF1<0,故C正確;當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0,曲線SKIPIF1<0,即SKIPIF1<0一定過(guò)直線SKIPIF1<0與圓SKIPIF1<0的交點(diǎn),故D正確.故選:BCD.6.過(guò)圓SKIPIF1<0上一點(diǎn)P作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為A,B,則(
).A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.直線AB與圓SKIPIF1<0相切【答案】BCD【分析】根據(jù)圓的切線的性質(zhì),建立直角三角形,結(jié)合勾股定理以及銳角三角函數(shù),可得答案.【詳解】由題意,作圖如下:
設(shè)圓SKIPIF1<0與圓SKIPIF1<0的圓心為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0與圓SKIPIF1<0相切,所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤,B、C正確.故
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學(xué)檢驗(yàn)員高級(jí)工試題庫(kù)與參考答案
- 2025年河北科技學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)匯編
- 2025年廣東嶺南職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)新版
- 生理學(xué)練習(xí)測(cè)試題附答案
- 2025黑龍江省安全員B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 2025年貴陽(yáng)康養(yǎng)職業(yè)大學(xué)單招職業(yè)傾向性測(cè)試題庫(kù)一套
- 2025年??诮?jīng)濟(jì)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)帶答案
- 2025年廣西自然資源職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)必考題
- 汽配質(zhì)保合同范本
- 加工鋼渣合同范本
- 一年級(jí)寫(xiě)字下學(xué)期課件(PPT 38頁(yè))
- 《實(shí)用日本語(yǔ)應(yīng)用文寫(xiě)作》全套電子課件完整版ppt整本書(shū)電子教案最全教學(xué)教程整套課件
- 怎樣處理課堂突發(fā)事件
- 采礦學(xué)課程設(shè)計(jì)-隆德煤礦1.8Mta新井開(kāi)拓設(shè)計(jì)
- 中藥藥劑學(xué)講義(英語(yǔ)).doc
- 【課件】Unit1ReadingforWriting課件高中英語(yǔ)人教版(2019)必修第二冊(cè)
- Q∕GDW 10799.6-2018 國(guó)家電網(wǎng)有限公司電力安全工作規(guī)程 第6部分:光伏電站部分
- 滴灌工程設(shè)計(jì)示例
- 配套模塊an9238用戶手冊(cè)rev
- 醫(yī)院室外管網(wǎng)景觀綠化施工組織設(shè)計(jì)
- 霍尼韋爾DDC編程軟件(CARE)簡(jiǎn)介
評(píng)論
0/150
提交評(píng)論