版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
A{x1x2解:由1x31x23或1x23, 3x5A{x1x2解:由1x31x23或1x23, 3x5,或1x1. 2.(2)|x1|(0)(1)0|2x1|解:(1)由0|2x1|222x12,而且2x10. x ,而且x .解集是( ,)(,)112 2(2)由|x1|x1,即1x1.解集是(113f(x1xxf(x解:令t x1,xt xt1)2f(t)(t1)22(t1)t21 f(x)x2(1)f(x)g(x)(2)f(xlnx2g(x)2lnx2x(3)f(x)g(xx(1)f(x)(2)f(xx0g(xx0相同同(1)y x2(2)yxx260,即x26 (1)的定義域?yàn)閧x|x同(1)y x2(2)yxx260,即x26 (1)的定義域?yàn)閧x|x 6或x6}.1x20x21x2x21x21,且x20x1x3x2。故函數(shù)的定義域?yàn)?3)1).y2log3(xy2log3x2)xlog3(x2)2y x32y2,因此函數(shù)的反函數(shù)為y32x2sin2 (sin 1(1)yxy解:(1)該函數(shù)是由函數(shù)yarctanu,u v,vx2復(fù)合而成的(2)y2uuv2vsintt11x8.f(x)fxf(0)及f(220,所以在函數(shù)的第一個(gè)表達(dá)式f(x1x2xf(2)12)1f(0)101;又因?yàn)?0f(x2x中,用2xf(2)224yu2 uev vx1,當(dāng)x x1時(shí)(2)yyu2 uev vx1,當(dāng)x x1時(shí)(2)y(ex11)21x1ye111)21e21)21x1ye111)21e01)2101exe yxarcsin ycos2x y(1)f(xx2arcsinx,則f(x(x2arcsinxx2arcsinxf(x)(x)2arcsin(x)x2arcsinxf(x)f(xf(x)f(xf(x(2)f(x)cos2x1f(x)cos2(x1cos2x1f(x)f(xf(xexexexexf(xf(x)f(xf(xyln(x2x211yln(x21ln10,所以函數(shù)有下界0xx12.f(x,求(1f(x)的定義域(2)f(2)及f(a2,(a為常數(shù)(1f(x)的定義域?yàn)?0)[0R(2)因?yàn)?02xf(2)2a20所以在第二個(gè)表達(dá)式中,用a2替代x,得到f(a2) 13.f(x是定義在(a,a上的函數(shù)(a0)(1)f(xf(x(2)f(xf(x(3)f(x(1)H(xf(xf(1)f(xf(x(2)f(xf(x(3)f(x(1)H(xf(xf(xH(x)f(x)f[(x)]f(x)f(x)H(x)f(xf(x(2)令G(x)f(xf(xG(x)f(x)f[(x)]f(x)f(x)G(x)f(xf(x(3)由(1)可知f(xf(x也是偶函數(shù),再由(2)可知f(xf(x1[f(x)f(x)]1[f(x)f(x)]f(x)f(x14.求過(guò)點(diǎn)(31并且斜率為4yy0k(xx0,其中k4x0y(1)(4)(x3)y4xy0115.求過(guò)點(diǎn)(24)(49)y xy2 x2y4x(2)9 4,從而得5x6y34016.解:固定成本C02000000元,變動(dòng)成本為C1(Q4Q元,其中Q總成本函數(shù)為C(Q20000004Q 2000000平均成本函數(shù)為C(Q)R(QL(QR(Q16.解:固定成本C02000000元,變動(dòng)成本為C1(Q4Q元,其中Q總成本函數(shù)為C(Q20000004Q 2000000平均成本函數(shù)為C(Q)R(QL(QR(QC(Q8Q20000004Q4Q200000017.解:設(shè)總成本函數(shù)為C(xax2bx200xa102b10200a100b10020010ab100ab解這個(gè)方程組,得a0.03,b0,因此,總成本函數(shù)為C(x0.03x2200 0.03x2平均成本函數(shù)為C(x)0.03x 18.Rax2bxca02b0ca2b2c6a42b4cc即4a2bc6a0.5,b4,c0R0.5x24x1 1 , (2)0,1, , (1)數(shù)列的通項(xiàng)為y ynn(1)lim|an|0liman0(2)若數(shù)列{a2n}與{a2n1收斂且極限是相同的,那么{an}(2)0,1, , (1)數(shù)列的通項(xiàng)為y ynn(1)lim|an|0liman0(2)若數(shù)列{a2n}與{a2n1收斂且極限是相同的,那么{an}也收斂(1)|an||an0|1,3,5,7,9 (2)0,1,0,10,1,2n 2n(n)(1)(2)04.討論極限lim|x||x|x解:因?yàn)? lim11; lim(1)1,所以極 lim|x|x5f(x,討論limf(x是否存在x解:因?yàn)楫?dāng)x0時(shí),f(x)ex,而且 ,從而limex,所limf(x)lim 0ex因?yàn)楫?dāng)x0時(shí),f(xsinx,所以limf(解:因?yàn)楫?dāng)x0時(shí),f(x)ex,而且 ,從而limex,所limf(x)lim 0ex因?yàn)楫?dāng)x0時(shí),f(xsinx,所以limf(xlimsinx0limf(xlimf(x0,因此極限limf(x06.limf(x)0lim|f(x|0limf(x0,所以對(duì)任意給定的正數(shù)0,存在0,使當(dāng)0xf(x)|f(x)||f(x|lim|f(x|0f7x0時(shí),哪些是無(wú)窮小量,哪些是無(wú)窮大量,哪些既不是無(wú)窮大量也xxxsin1x,ln|x|12x, x20.01xx1(1)xx, ,x20.01x,0.1ln|x|x ,1(2)x是無(wú)窮小量的有:sin1 1x,ln|x|x,x20.01x1 2x,x|x|x8.f(x)xlimf(x )x1x1xx1x f(xlimx10 limf(xlim(x1)0x1xx1x xxx1f(x9.以下數(shù)列當(dāng)n1limf(x )x1x1xx1x f(xlimx10 limf(xlim(x1)0x1xx1x xxx1f(x9.以下數(shù)列當(dāng)n1 }, 1lim[1(1)] lim(1)n 0解:因?yàn)?0, 0,所以當(dāng)nn10.x0sinx2是比tanx高階的無(wú)窮小.(本題超前!以后再做1:首先約定0 x00x2,0sin1(tan31,得:sinsinsin00,故0tantantantansinx2是比tanx2(可以利用等價(jià)無(wú)窮小關(guān)系)x0sinx2:x2tanx:xsin limx0tanx0sinx2是比tanx(sinsinsinx)limx1100tantanx0tanx0sinx2是比tanxx3x3n2n(1)lim(x3x6)(2)(3)xx2x1nn34n22x2(6)lim(2x3x(4)xx25x1 1(1)lim(x23x6)223264x3x (2)(5)x0sinx2是比tanxx3x3n2n(1)lim(x3x6)(2)(3)xx2x1nn34n22x2(6)lim(2x3x(4)xx25x1 1(1)lim(x23x6)223264x3x (2)(5)xx2x11 1x2x1x3x0,所以解:因?yàn)閤x3xxx2x13 3nn0000 lim(3)14nn34n21022x2102(4)xx25x 1 1x )(5)1 1(1x)(1xx2 (1x)(1xx22x(1x)(2x1(1x)(1xx2 x1(1x)(1xx22x11x 1112(6)lim(2x33x0,所以lim(2x33x6)解:因?yàn)閤2x33x(xh)2() (1)lim ,(2)x3n12Lx2(4)(5)(6)5xnx1解:(1)lim1sin1lim1limsin10sin00xxx1,所以limsin10另解:因?yàn)閘im10sinxx(xh)2(x22xhh2)lim(2xh)2x02x(2)1(3)lim(11L1)lim(21)1解:(1)lim1sin1lim1limsin10sin00xxx1,所以limsin10另解:因?yàn)閘im10sinxx(xh)2(x22xhh2)lim(2xh)2x02x(2)1(3)lim(11L1)lim(21)13n11 (3n3n1lim 3 3 (4)n3n11 1(n(1lim12L1 x2(x1)(xx 5x4lim(x1)(x4)limx4(6)x1x2ax6,確定a與b13.若xx2ax6lim(x2)0,所以lim(xaxb0解:因?yàn)閤222ab0,從而得b2a4x2axx2ax2a(x24)a(xxxxlim(x2a)4aa2,b2a42(2)48x14f(x,問(wèn)當(dāng)a為何值時(shí),極限limf(x2x xlimf(x)limexe01limf(x)lim(2xa0aalimf(xlimf(x,即a1時(shí),極限limf(x15x0ex1x是等價(jià)無(wú)窮小.(本題超前!以后再做證:令uex1,則exu1xln(u1x0u0ex u0ln(uuux0ex1x(1)limtanxsinx(3)(4)x0sinxsinx2sin2x1x,(7)lim(5)(6)x3sin(xsintanxsinsin解(1)證:令uex1,則exu1xln(u1x0u0ex u0ln(uuux0ex1x(1)limtanxsinx(3)(4)x0sinxsinx2sin2x1x,(7)lim(5)(6)x3sin(xsintanxsinsin解(1)lim1tanx(1cosx)11(11)0x0tantanxsintansinsin) 10 55 ) 11 x0sin sin5x5 x0sin 2sin2sin2212xsinxsin令u,則x ,當(dāng)x時(shí),u0,從limxsin1 sinulimsinu1.u02x1(2x11)(2x1 sin(2x11)sin2x11)sinx012x1011x0sinx2sinlimxsin1100lim xx )sinx2xsin x0sin(x3)(x(x(x2)1(32)5x3sin(xsin(x x3sin(x22),(2) (3)xx(4)lim(1x)x (5)lim1xx02222lim解:(1)limxxx 11xxlim xlim e4x1 3x1x x2)x2x22),(2) (3)xx(4)lim(1x)x (5)lim1xx02222lim解:(1)limxxx 11xxlim xlim e4x1 3x1x x2)x2xe2 1)x2lim(3))x2)x2x21(4)lim(1x)xlim13((5)lim1x lim1x lim1xx e2x02x02x02L2n2 2n22n2解 2n2 2n2 2n212n2 2n2 2n22n2 2n2 2n2L2n2 2n2 2n22n2 2n212n2 n(2n2 2n22L2n2n)2n2 又因?yàn)閚2n2 n2n21 )1L2n2 2n22n2 1cos12x (1)()(3)()sintanx03arcsinx0arctanx(1)解:因?yàn)楫?dāng)x0,sinx~x,1cosx ,所1)1L2n2 2n22n2 1cos12x (1)()(3)()sintanx03arcsinx0arctanx(1)解:因?yàn)楫?dāng)x0,sinx~x,1cosx ,所1lim1cosx1sin2(2)x0tanx~x,12x1~2x112x11tan(3)x0arcsinx~xln(15x~5x5x03arcsin sin(4)因?yàn)楫?dāng)x0,arctanx~x, sinlimsin x0arctan 20.x0xsinxxyxx0f(0)011f(0limxsin10f(0lim(x11f(0f(0,極限limf(xx021.xxxxx25x(1)y(2) (3) xxxx25x解(1)yxx由x2xxxxx25x(1)y(2) (3) xxxx25x解(1)yxx由x2x20,即(x2)(x1)0,得x x1.因?yàn)閤2和x1時(shí),x2x1x25x(x2)(xx2 x2因?yàn)閤2x x2(x2)(xx 2 x25x(x2)(xxx1因?yàn)閤2x x1(x2)(xx1xyex20x2x2x2limex2x2xxxx(3)f(x)xx0f(0)0f(0lim(x11f(0lim(x11f(0f(0,極限limf(xx022.ln(1x21(3) x0(1)(2)x0sin(11ln(1x2(1)x0sin(1sin(1f(x)x0f(0)0 ln(1x2f(0)0所以x0sin(11(2)lim111limcos1xsin(1f(x)x0f(0)0 ln(1x2f(0)0所以x0sin(11(2)lim111limcos1xlim)cos01cos(1)cos(11110(3) x0x0ln(1x~x ln(1x) x1.x0x03x2xx23f(x,求bf(xx1x1f(14,極限limf(xlim(3x2b312b3b當(dāng)limf(xf(1,即3b4,從而b1f(xx124.求常數(shù)a和bxsin1xxxaxxyx(2)xsinaxxxyxx0f(xax2x0f(xxbx0f(0)2f(0lim(ax2)2f(0lim(xbbf(0f(0f(0),即b2f(xxf(0lim(xbbf(0f(0f(0),即b2f(xx0續(xù).因此,當(dāng)b2axsin1xxxf(x)sinsinx0f(x當(dāng)x0時(shí),f(x)x x0f(0)af(0limsinx1f(0lim(xsin1bbf(0f(0f(0)ab1f(xx0處連續(xù).因此,當(dāng)ab125.證明方程sinxx1至少有一個(gè)介于2和2f(xsinxx1f(x22f(2)sin(2)(2)11sin20f(2)sin2213sin20由根的存在定理可知,在(22)x0f(x0sinx0x010方程sinxx1至少有一個(gè)介于2和2x026.yxexx21x0x1xf(xxexx210,1f(0)0e002110f(1)1e121e20由零點(diǎn)定理可知,在(01xf(x0yxexx21x0x1x1f(xxxxf(x)f(1)limx1f(1xf(x)fxx22x(xf(1)xx1f(xxxxf(x)f(1)limx1f(1xf(x)fxx22x(xf(1)xxxlim(x1)(11)y3xyf(xxf(x3(xx23x2)limyx0 yxxx3.f(xx0f(0)0limf(xlimx2sin10,所以limf(xf(0)f(xx0x2sin1f(x)f(0)limxsin10f(xx0又因?yàn)閤f(0)0(1)y (2) (3)xx(4)ytan(1)yy(x1)x11 (2)yxy(x2 x .2(3)y xxx4解:因?yàn)閥 xx xx2x4yx4) (4)ytanytanu)sec2u((3)y xxx4解:因?yàn)閥 xx xx2x4yx4) (4)ytanytanu)sec2u(2)(3)(1)ylnxylnx)1(2)y2x1解:y(2x)2xln2, 20ln2ln2(3)ysinxcos1ysinx)cosx 6.ysinx1 cosysinx)cosx,切線的斜率為ky1 3(x) 法線的斜率為k1k 3,法線方程為y2 3(x6)(1)y4x3 (2)(3)yx22xlogx,(6)ylnsin(4)y xxex(5)y1cos(1)y4x3 x2ln2解:y(4x3 x2lnx)(4x3)(x)(2lnx)12x22(2)yy2解:y(4x3 x2lnx)(4x3)(x)(2lnx)12x22(2)yy(x2ex)(x2exx2(ex)2xexx2ex(3)yx22xlogxyx22xlogx22x22x)logx)222x2xln2(4)y x解:y(xxex)(x)(xex) (x)exx(ex) exxex2 2sin(5)y1cossinx)(sinx)(1cosx)sinx(1cosy1coscosx(1cosx)sinx(sinx)cosxcos2xsin2 1cos(6)y1xlnln (lnx) ln lnx(x) 1解:y )(1)ysinxcosxtanxcotxcscysinxcosxtanxcotxcsc(sinx)(cosx)(tanx)(cotx)(csccosxsinxsec2xcsc2xcscxcotx(2)yln3xarcsinxtanyln3xarcsinxtanx)xln3)(arcsinx)tansec2x1(3)yarctanxarccosxyyln3xarcsinxtanx)xln3)(arcsinx)tansec2x1(3)yarctanxarccosxy(arctanxarccosx2x)(arctanx)arccosx)2x2xln211(4)yxlnxlnxyxlnxlnxex)xlnx)lnx)ex(x)lnxx(lnx)(lnx)xlnx(x)lnxx11lnxexlnx11lnxex(5)y1sintsint)(tsint)(1sint)tsint(1siny1sin(sinttcost)(1sint)tsint(cossintsin2ttcosttcostsinttsintcos(1sinsintsin2ttcos(6)yexsinxlogyexsinxlogx)exsinx)logx)ex)sinxex(sinx)exsinxexcosxxln(7)ysecxlnx x解:y(secxlnx x2x)(secxlnx)(x2x(secx)lnxsecx(lnx)[(x)2x x(2xsecxtanxlnx x2ln22y xx34sin1,求x1解:y[x(x34(secx)lnxsecx(lnx)[(x)2x x(2xsecxtanxlnx x2ln22y xx34sin1,求x1解:y[x(x34sin1)](x)(x34sin1) x(x34x34(x4sin1) x(3x00) x223x113210x單位的總成本是C(x)20003x50x(元MC(x)C(x)20003x50x)03503 2 32.55.5.(1)ysin2x3,(2)ylnsin4x,(3)yexx(4)y(3x4(5)yeaxsinbx,(6)y(1)ysin2ysin2x32sinx3(sinx32sinx3cosx3(x36x2sinx3cos(2)ylnsincos4x(4x)4cosx4cotylnsin4x)(sin4x)(3)yexyexxx)(ex)(xx2)ex()(x2)ex )x ex(4)y(3x4y3x41)100100(3x41)99(3x41)100(3x41)99(12x3100(3x41)9912x31200x3(3x4x ex(4)y(3x4y3x41)100100(3x41)99(3x41)100(3x41)99(12x3100(3x41)9912x31200x3(3x4(5)yeaxsinyeaxsinbx)eax)sinbxeax(sinbx)aeaxsinbxeaxbcos(6)ylnsin解:y xln3(ln xln3 xlnsinlnsin xln3 () xln )sin (1)ysin2xe2xy(sin2xe2x)(sin2x)e2x)cos2x(2x)e2x(2x)cos2x2e2x2(cos2xe2x(2)y(5x24)31y5x2431x](5x24)31x(5x2431x(10x0)31x(5x24)[(1x)310x31x(5x24)(1x)3(110x31x (5x24)(1(3)y1cossin2x)(sin2x)(1cos2x)sin2x(1cosy1cos(2cos2x)(1cos2x)sin2x(02sin2cos2x2cos22x2sin22x2cos2x(3)y1cossin2x)(sin2x)(1cos2x)sin2x(1cosy1cos(2cos2x)(1cos2x)sin2x(02sin2cos2x2cos22x2sin22x2cos2x 1cos(4)設(shè)y 1x2,求y(1x2)(1x2)(02x)212111(1)ysin2xcosysin2xcos2x)(sin2x)cos2xsin2x(cos2 )cos2x (2sin 2sinxcosx(cos2x2sin2xsin 2sinxcosx1cos2x2sin2xsin2(2)y3xcosxtanx3xcosxtanx2) 3x) )(tanx2y(3x(3x)sinx()sec2x2(x2 cos3x1sinx2xsec2 2(3)y 4x(4x23ln34x3 (3x)4x23x(4x24解:y( ) 4(4x2(4x23xln34x23x(4x23ln34x3 (3x)4x23x(4x24解:y( ) 4(4x2(4x23xln34x23x(4x2)3xln324(4x2(4x21t(4)yy 11(3t)(1t)(3t)(1t) sec(2t)sec(2t)(1t2(5)y(xa2x2 a2解:y[(x a2x2)1](xa2x2)2(x a2x2a2x2)2[(x)a2x2(x(xa2x2)2(a2x22a2(xa2x2)22a2(xa2x2)2a214.yef(xyyef(x2]ef(x2)f(x2ef(x2)f(x2(x22xef(x2)f(x2(1)y(11lnyln(11)xxln(11)x[ln(x1)lnx]xln(x1)xln(lny)[xln(x1)xlnx][xln(x1)](x(1)y(11lnyln(11)xxln(11)x[ln(x1)lnx]xln(x1)xln(lny)[xln(x1)xlnx][xln(x1)](xln1yln(x1)xx(lnxx1lnx1]y[ln(11) yy[ln(x1) x(x(2)y(x2)(xx(xx(xlnyln [lnxln(x1)ln(x2)ln(x(x2)(x (x2)(x (lny)1[lnxln(x1)ln(x2)ln(x1y1[1(x1)(x2)(x3 xxx1(13 y1y(1 xyexey(xyexey)(xy)(ex)(ey)0yxyexeyy0(xey)yexyexyxey17.x22xyy22xx2(x22xyy2)2x2y2x(xey)yexyexyxey17.x22xyy22xx2(x22xyy2)2x2y2xy2yyy1xyxx2x22xyy22x,得44yy24y0y4x21201或1245k 所求切線方程為y0 (x2)或y4 (x2),即y x1或y xxx218.f(xx1處可導(dǎo),求abaxf(xx1f(xx1limf(x)limf(x)flimx2lim(axb)aab1,即b1f(x)fx2f(1)lim(x1)xxf(x)faxbax(1a)f(1)xxxxxx因此,得a2b1a1219f(x)ln(1xf(xsinxf(xxxf(x)x0f(x)f(0)limsinxln(10)limsinxf(0)xf(xf(xxxf(x)x0f(x)f(0)limsinxln(10)limsinxf(0)xf(x)fln(1x)ln(1f(0)xxxlimln(1x)limx1f(0)f(0)1f(0)1xxf(x)y1解:因?yàn)閥1t33t2x1t22t t t yytet)t)ett(et)ettetx(et)et(t)et ette e(1t) (1)y xln1 ln1 y(xlnlnxx(ln lnxx1y 1 ln1 y(xlnlnxx(ln lnxx1y lnx ln ln (ln222 x2lnx 2 x2ln(2)ysinxcos ysinxcosx)cosxsiny(cosxsinx)sinxcosx(sinxcos(1)yxsinxy()y(xsinx)(x)sinxx(sinx)sinxxcosy(sinxxcosx)(sinx)(xcosx)cosx(x)cosxx(coscosxcosxxsinx2cosxxsin y()2 20 (2)y3x32x2x1y3x32x2x1)9x24x1y(9x24x1)18x23.求下列函數(shù)的n(1)yeayeax)eax(ax)aeay(aeax)aeax(ax)a2eay(a2eax)a2eax(ax)a3eay(n)(2)yxeyxex)(x)exx(ex)exxex(1x)ey[(1x)ex](1x)ex(1x)(ex)ex(1x)ex(2x)ey[(2x)ex](2x)ex(2x)(ex)ex(2x)ex(3y[(2x)ex](2x)ex(2x)(ex)ex(2x)ex(3x)ey(n(nx)e24yf(xy(1)x2y2(x2y2a22x2yyyyx(xx(x)yxyyxyyy y (2)y1y1xeyy0(x)eyx(ey)eyxeyeyey12(ey)(2y)ey(2(2eyy(2y)ey(y)(2y)2ey(3y)(2eyy 2e(3y)ye(3 (2(2(1)y2xy2xx2ex)2x)x2ex)22xexdyydx(22xexx2ex(2)yy(xex2)(x)ex2x(ex2)ex2xex2(2x)(12x2dyydx(12x2)ex21(3)y1 (1ex)cosx(1ex)(cos 2xexcosx1(3)y1 (1ex)cosx(1ex)(cos 2xexcosx(1ex)(sin)cos2cos2 2xexcosx(1ex)(sindyydxcos2(4)ysiny(sin2x)cos2x(2x)2cosdyydx2cos(1)xyexyydyd(xydexdxdyexyd(xy)exydxex(1exy)dy(exyxdy 11ex(2)x2y2R2(Rydyd(x2y2dx2dy22xdx2ydyydydyx (1)d C) (2)d(arttanx)1(3)d(1e3xC) 解法一:數(shù)值9.8(2)d(arttanx)1(3)d(1e3xC) 解法一:數(shù)值9.8fxxx9.81取x9,x0.8,則f(9) 93,f(x),f(9)22f(9.8f(90.8f(9)f310.83.13339.890.89(10.8)310.0889解法二因?yàn)?0.0889 9.831.04453.133529.設(shè)某商品的需求函數(shù)為Q80010P(P為價(jià)格,Q為需求量),成本函數(shù)為(2)解:由Q80010PP800.1QR(Q)QPQ(800.1Q)80Q0.1Q2L(QR(QC(Q80Q0.1Q2500020Q60Q0.1Q25000(1)L(Q60Q0.1Q25000)600.2Q經(jīng)濟(jì)意義:當(dāng)需求量Q154時(shí),再增加銷售(或生產(chǎn))30L(400)600.240020經(jīng)濟(jì)意義:當(dāng)需求量Q400時(shí),再增加銷售(或生產(chǎn))201f(xsinx在區(qū)間[0,2]上滿足羅爾定理的條件,并求出此時(shí)定理中的數(shù)值.f(xcosx在區(qū)間(02)內(nèi)有定義,所以在區(qū)間(02)f(0)f(21f(xsinx在區(qū)間[0,2]上滿足羅爾定理的條件,并求出此時(shí)定理中的數(shù)值.f(xcosx在區(qū)間(02)內(nèi)有定義,所以在區(qū)間(02)f(0)f(20f(x)在區(qū)間[02]上滿足羅爾定理的條件.由f(xcosx0x2k 值 值.f(xlnx是初等函數(shù),且在區(qū)間[1,2]上有定義,所以它在區(qū)間[1,2]f(x1在區(qū)間(1,2)f(x在區(qū)間(1,2)f(x在區(qū)間[1,2]上滿足拉格朗日中值定理的條件.從而存在一點(diǎn)(12)f(2ln2f(1ln10f(1ln201解得 (1,2),因此,此時(shí)定理中的數(shù)值 3.sinx2sinx2f(xsinxx1x2x1x2sinx2sin0x2x1x2x1x2f(xx1x2]上滿足拉格朗日中值定理的f(x2)f(x1)f()(x2x1),(x1,x2)sinx2sinx1cos(x2x1)1x2x2cosx2sinx2sinx2 f(xarctanxarccotxf(x)(arctanxarccotx)(arctanx)(arccotx)01 1 所以f(x)c.又因?yàn)閏f(1)arctan1arccot ,所以,得f(x) arctanxarccotx f(xarctanxarccotxf(x)(arctanxarccotx)(arctanx)(arccotx)01 1 所以f(x)c.又因?yàn)閏f(1)arctan1arccot ,所以,得f(x) arctanxarccotx5ex(1)x0(exex x0(x2 x02x 20 x0x2(2)limln(12x)1x01 12exe(3)sin(exex)(sinx)exexexesinexee0(n(4)x(xnn(n解: x x(2x x2xlnx(2xlnL(5)limx2lnlnlimxlnx x0 (6) ex(ex1[x(exex1解: ) exx(exexx0ex1 x0exlnlimxlnx x0 (6) ex(ex1[x(exex1解: ) exx(exexx0ex1 x0exexx02(7)limxcos1cos1sin11解:limx 1limsin1sin0xsin6.驗(yàn)證極限xxcos11sinxsin11xxcos 1 1(xsin1cos(xcos x1sin7.f(xf(xf(x)x(x解:令f(x)x(x2)0,得x1 x22列表判別如下:因此,區(qū)間(0)、(2f(x(,0(0,2(2,ff解:因?yàn)楫?dāng)x(02yxsinx)1cosx0解:因?yàn)楫?dāng)x(02yxsinx)1cosx0,所以函數(shù)yxsinx證明:當(dāng)x0ex1x證:f(xexx1f(xexx1)ex1.x0f(x)0f(x在(0x0f(x)f(0)0,即exx10,因此 1(x0)10.(1)yx3解:函數(shù)的定義域?yàn)?y(x3x)3x2xx(3xyx(3x10x1x0列表判別如下:(、(0f(x(,0)f(x(2)yxln(x解:函數(shù)的定義域?yàn)?1y[xln(x1)] 1y0x01x0f(x0,因此,區(qū)間(0f(x當(dāng)1x0f(x0,因此,區(qū)間(10f(x(3)y2x33x2解:函數(shù)的定義域?yàn)?y(2x33x212x)6x26x126(x2)(x(1,ff令y6(x2)(x1)0,得x1 x21.列表判別如下:因此,區(qū)間(2)、(1f(x的單調(diào)增區(qū)間;區(qū)間(2,1f(x(4)y1x1x)1xxy1令y6(x2)(x1)0,得x1 x21.列表判別如下:因此,區(qū)間(2)、(1f(x的單調(diào)增區(qū)間;區(qū)間(2,1f(x(4)y1x1x)1xxy1 (1 (1因此,區(qū)間(1、(1f(x(5)f(x) x3 x3解:函數(shù)的定義域?yàn)?xxx f(x)(x3 x31) 0x3 x3(x1) f(xx10x1x0f(x列表判別如下:因此,區(qū)間(0)、(1f(x的單調(diào)增區(qū)間;區(qū)間(0,1f(x11.(1)yxex解:函數(shù)的定義域?yàn)?y(xex)(x)exx(ex)exxex(1x)ex(,ff(,ffy1x)ex]1x)ex1x(ex)ex1x)ex2x)ex.yy1x)ex]1x)ex1x(ex)ex1x)ex2x)ex.y0,即(2x)ex0x2.x2f(x0,因此區(qū)間2x2f(x0,因此區(qū)間(2,+)為凹區(qū)間.點(diǎn)(22e2為曲線的拐點(diǎn).(2)yln(1x2解:函數(shù)的定義域?yàn)?(1x2)11(2x)(1x2)(2x)(1x2(1x22(1x2)2(1x2y(1x2 (1x2 1令y0,解得x1 x21.這兩個(gè)點(diǎn)將定義域分成三個(gè)區(qū)間:(1、(11及(1所以點(diǎn)(1ln2),(1,ln2)是曲線的拐點(diǎn);區(qū)間(1,1是凹區(qū)間,區(qū)間(1(3)yx42x31解:函數(shù)的定義域?yàn)?y(x42x31)4x36x2y(4x36x2)12x212x12x(x1)令y0,即12x(x1)0,解得x1 x2這兩個(gè)點(diǎn)將定義域分成三個(gè)區(qū)間:(0)、(01及(1所以點(diǎn)(01,(1,0)(0)(1(0,1(,0(0,1(1,yy(,(1,yy(1)f(x) (x 解:函數(shù)的定義域?yàn)? f(x) (x1)3]0 (x (x .x1 (1)f(x) (x 解:函數(shù)的定義域?yàn)? f(x) (x1)3]0 (x (x .x1 x1f(xx1f(x0x1時(shí),f(x)0因此f(1) x1(2)f(x)xln(1x1f(x)[xln(1x)]11 1f(x00x011x0f(x0x0f(x0f(0)0ln(10)0x0(3)f(x)3xx0 3(x2f(x)(3x )3 f(x0x240x2x2f(x)(312) 0f(2)32)126612是函數(shù)的極大因?yàn)閒(2)x2因?yàn)閒(2)240f(2)32126因?yàn)閒(2)240f(2)32126612是函數(shù)的極小值,x2(4)f(x)x39x215x1解:函數(shù)的定義域?yàn)?f(x)(x39x215x1)3x218x153(x26x5)3(x1)(xf(x0,即3(x1)(x50x11x25f(x)(3x218x15)6x因?yàn)閒(16118120f(11391215118是函數(shù)的極大x1是極大值點(diǎn).又因?yàn)閒(56518120f(553952155124x5(5)f(x)2x2解:函數(shù)的定義域?yàn)?f(x)(2x2x4)4x4x34x(1x2)4x(1x)(1f(x0,即4x(1x)(1x0x11x20x31f(x)(4x4x3)4因?yàn)閒(14121)280f(12(1)21)41x1又因?yàn)閒(0)4120240f(0)202040是函數(shù)的極小值,xf(14121280f(1212141x113.f(x1解:函數(shù)的定義域?yàn)?(2x)(1x2)(2x)(1x2)(1x2)22(1x2)(1x22(1x2(1x2f(x))1令f(x)0,即(2x)(1x2)(2x)(1x2)(1x2)22(1x2)(1x22(1x2(1x2f(x))1令f(x)0,即2(1x2)0,解得x x1.這兩個(gè)特殊點(diǎn)將定義域分四個(gè)區(qū)間:(1、(11及(1列表判別如下:f(11x121f(1)1x1(1)f(x)8x2f(x)8x2x416x4x34x(2x)(2xf(x0,即4x(2x)(2x0x0x2(舍去x2(舍去.f(0)0f(1)f(1)817f(x在[11上的最小值為f(0)0f(1x(2)f(x)x2x 解:f(x)(x x3)1 1 1 由f(x)0,即1 0,解得駐點(diǎn)x1;而x0時(shí),f(x)不存在,即x0是可導(dǎo)點(diǎn).比較f(0) f(1)1f(1)5f(8)2f(x在[1上的最小值為f(1) ;在x8處取得最大值2(,(1,(1,f(xf(x (3)f(x)sin2x[ f(xsin2xx)2cos2x1由f(x)2cos2x10即cos2x1當(dāng) x時(shí)解得駐點(diǎn)x,x 比較f() ,f ) (3)f(x)sin2x[ f(xsin2xx)2cos2x1由f(x)2cos2x10即cos2x1當(dāng) x時(shí)解得駐點(diǎn)x,x 比較f() ,f ) ) f()sin()()0 ,f()sin 0 的大小,得到f(x)在 ]上的最小值為f() ;最大值為f ) (4)f(x)x(x[2,解:f(x)[x(x1)3](x)(x1)3x[(x1)3](x1)3 (x (x1)3[3(x1)x] (4x3)33(xf(x0,即4x30x3x1f(xx0f(3)33f(1)f(2)23f(2)2的大小,得到f(x) [22]f3)332f(2)23215.f(xln(1x2,x[0(1)f(x)f(xln(1x21x0f(x0f(x在所給區(qū)間[0(2)f(x)f(x在所給區(qū)間(0f(xf(0)ln(102)0解:設(shè)長(zhǎng)方體容器的底面邊長(zhǎng)為xhVx2h,所以容器
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024標(biāo)準(zhǔn)員工固定期限勞動(dòng)協(xié)議樣本版
- 2024年規(guī)范化員工職位協(xié)議樣本版
- 2025年度創(chuàng)新技術(shù)塔吊智能化改造及租賃合同3篇
- 06 野生保護(hù) -把脈2021年中考英語(yǔ)作文熱點(diǎn)【學(xué)科網(wǎng)名師堂】
- 2024生意合作協(xié)議合同范本:農(nóng)產(chǎn)品批發(fā)市場(chǎng)合作框架協(xié)議2篇
- 2025年度原煤現(xiàn)貨交易市場(chǎng)準(zhǔn)入與交易合同3篇
- 2024年中學(xué)生教師節(jié)演講稿范文(30篇)
- 2024設(shè)計(jì)公司保密協(xié)議書(shū)
- 動(dòng)物學(xué)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋云南大學(xué)
- KTV裝修泥工施工合同模板
- 2025年北京生命科技研究院招聘筆試參考題庫(kù)含答案解析
- 九年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)綜合測(cè)試題(含答案)
- 機(jī)動(dòng)車查驗(yàn)員技能理論考試題庫(kù)大全-上(單選題部分)
- 監(jiān)理人員安全生產(chǎn)培訓(xùn)
- 2024-2030年中國(guó)電力檢修行業(yè)運(yùn)行狀況及投資前景趨勢(shì)分析報(bào)告
- 河北省百師聯(lián)盟2023-2024學(xué)年高二上學(xué)期期末大聯(lián)考?xì)v史試題(解析版)
- 中央空調(diào)系統(tǒng)運(yùn)行與管理考核試卷
- 核電工程排水隧道專項(xiàng)施工方案
- 山西省呂梁市2023-2024學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 2024年市場(chǎng)運(yùn)營(yíng)部職責(zé)樣本(3篇)
- 民辦學(xué)校招生教師培訓(xùn)
評(píng)論
0/150
提交評(píng)論