版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)郡中學(xué)2025屆高三第一次調(diào)研考試
皿r、、九
數(shù)學(xué)
本試題卷共4頁.時(shí)量120分鐘,滿分150分.
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上.
2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改
動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).回答非選擇題時(shí),將答案寫在答題卡上.寫在本
試卷上無效.
3.考試結(jié)束后,將本試卷和答題卡一并交回.
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是
符合題目要求的.
1.已知集合4={尤|一一%=。},8={尤|、一無一2<。},則()
A.{0,1}C.{0,l,2}D.{-1,0,1}
2.已知根,”是兩條不同的直線,a,/?是兩個(gè)不同的平面,則〃?〃a的一個(gè)充分條件是()
A.m//n,n//aB.m///3,a//
C.m,LaD.mon-A,n//
(?\2025
3.G-V的展開式中的常數(shù)項(xiàng)是()
A.第673項(xiàng)B.第674項(xiàng)
C.第675項(xiàng)D.第676項(xiàng)
4.銅鼓是流行于中國(guó)古代南方一些少數(shù)民族地區(qū)的禮樂器物,已有數(shù)千年歷史,是作為祭祀器具和打擊樂
器使用的.如圖,用青銅打造的實(shí)心銅鼓可看作由兩個(gè)具有公共底面的相同圓臺(tái)構(gòu)成,上下底面的半徑均為
25cm,公共底面的半徑為15cm,銅鼓總高度為30cm.已知青銅的密度約為8g/cn?,現(xiàn)有青銅材料
1000kg,則最多可以打造這樣的實(shí)心銅鼓的個(gè)數(shù)為()(注:兀e3.14)
A.1B.2C.3D.4
5.已知定義在(0,+動(dòng)上的函數(shù)滿足〃x)<x(尸(x)-1)(/'(X)為的導(dǎo)函數(shù)),且
/(1)=0,則()
A./(2)<2B./(2)>2
C./(3)<3D./(3)>3
6.已知過拋物線C:V=2px(。>0)的焦點(diǎn)尸且傾斜角為二的直線交C于A8兩點(diǎn),M是A3的中點(diǎn),
點(diǎn)尸是C上一點(diǎn),若點(diǎn)"的縱坐標(biāo)為1,直線/:3x+2y+3=0,則P到C的準(zhǔn)線的距離與P至卜的距
離之和的最小值為()
A3V13口5V13「3V13「9^/13
26261326
7.已知函數(shù)〃x)=2sin(0x+9)10〉O,[d<m],對(duì)于任意的xe&/[+]]=,
+x]=0都恒成立,且函數(shù)/(x)在]—木,01上單調(diào)遞增,則①的值為()
A.3B.9C.3或9D.V3
8.如圖,已知長(zhǎng)方體ABCD-AB'C'。'中,43=30=2,44'=J5,。為正方形A5CD的中心點(diǎn),將長(zhǎng)
方體ABCD-A'B'C'D'繞直線0。進(jìn)行旋轉(zhuǎn).若平面a滿足直線。。與a所成的角為53°,直線/,a,
43
則旋轉(zhuǎn)的過程中,直線A3與/夾角的正弦值的最小值為()(參考數(shù)據(jù):sin53°aw,cos53°aw)
473-303百-4?3百+3「46+3
D.C.U.
10--------10-----------10-----------10
二、多選題:本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目
要求.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分.
9.某機(jī)械制造裝備設(shè)計(jì)研究所為推進(jìn)對(duì)機(jī)床設(shè)備的優(yōu)化,成立A8兩個(gè)小組在原產(chǎn)品的基礎(chǔ)上進(jìn)行不同方
向的研發(fā),A組偏向于智能自動(dòng)化方向,8組偏向于節(jié)能增效方向,一年后用簡(jiǎn)單隨機(jī)抽樣的方法各抽取
6臺(tái)進(jìn)行性能指標(biāo)測(cè)試(滿分:100分),測(cè)得A組性能得分為:91,81,82,96,89,73,8組性能得分為:
73,70,96,79,94,88,則()
A.A組性能得分的平均數(shù)比B組性能得分的平均數(shù)高
B.A組性能得分的中位數(shù)比3組性能得分的中位數(shù)小
C.A組性能得分的極差比B組性能得分的極差大
D.B組性能得分的第75百分位數(shù)比A組性能得分的平均數(shù)大
10.嫁接,是植物的人工繁殖方法之一,即把一株植物的枝或芽,嫁接到另一株植物的莖或根上,使接在一
起的兩個(gè)部分長(zhǎng)成一個(gè)完整的植株.已知某段圓柱形的樹枝通過利用刀具進(jìn)行斜辟,形成兩個(gè)橢圓形截面,
如圖所示,其中AC,8。分別為兩個(gè)截面橢圓的長(zhǎng)軸,且A,C,8,。都位于圓柱的同一個(gè)軸截面上,AD
是圓柱截面圓的一條直徑,設(shè)上、下兩個(gè)截面橢圓的離心率分別為6,e2,則能夠保證|8快夜的
6,02的值可以是()
11.對(duì)于任意實(shí)數(shù)x,y,定義運(yùn)算“十”x十y=|x-M+x+y,則滿足條件。十匕=b十c的實(shí)數(shù)a,b,c的
值可能為()
03
A.a=-log050.3,6=O.4,c=log050.4
03
B.a=0.4,Z?=log。50.4,c=-log050.3
八…0.1110
C.ci—0.09,b——,c—In—
e0-19
D.a=~r,/?=In—,c—0.09
e019
三、填空題:本題共3小題,每小題5分,共15分.
12.在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)為(1,1),則上£=.
1+Z
13.寫出一個(gè)同時(shí)滿足下列條件①②③的數(shù)列{?!埃耐?xiàng)公式4=.
①%Z%是常數(shù),加,“eN*且機(jī)②3=2%;③{。〃}的前,項(xiàng)和存在最小值.
m—n
14.清代數(shù)學(xué)家明安圖所著《割圓密率捷法》中比西方更早提到了“卡特蘭數(shù)”(以比利時(shí)數(shù)學(xué)家歐仁?查
理?卡特蘭的名字命名).有如下問題:在"X”的格子中,從左下角出發(fā)走到右上角,每一步只能往上或往
右走一格,且走的過程中只能在左下角與右上角的連線的右下方(不能穿過,但可以到達(dá)該連線),則共
有多少種不同的走法?此問題的結(jié)果即卡特蘭數(shù)C£,-C;:.如圖,現(xiàn)有3x4的格子,每一步只能往上或往
右走一格,則從左下角A走到右上角3共有種不同的走法;若要求從左下角A走到右上角3
的過程中只能在直線AC的右下方,但可以到達(dá)直線AC,則有種不同的走法.
四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
15.(本小題滿分13分)
已知M為圓£+,2=9上一個(gè)動(dòng)點(diǎn),垂直》軸,垂足為N,。為坐標(biāo)原點(diǎn),DOMN的重心為G.
(1)求點(diǎn)G的軌跡方程;
(2)記第(1)問中的軌跡為曲線C,直線/與曲線C相交于A3兩點(diǎn),點(diǎn)Q(0,l),若點(diǎn)”(百,0)恰
好是□ABQ的垂心,求直線I的方程.
16.(本小題滿分15分)
如圖,四邊形ABCD為圓臺(tái)。的軸截面,AC=2BD,圓臺(tái)的母線與底面所成的角為45。,母線長(zhǎng)為
是且D的中點(diǎn).
(1)已知圓。2內(nèi)存在點(diǎn)G,使得。平面BEG,作出點(diǎn)G的軌跡(寫出解題過程);
(2)點(diǎn)K是圓。2上的一點(diǎn)(不同于AC),2CK=AC,求平面A3K與平面CDK所成角的正弦值.
17.(本小題滿分15分)
素質(zhì)教育是當(dāng)今教育改革的主旋律,音樂教育是素質(zhì)教育的重要組成部分,對(duì)于陶冶學(xué)生的情操、增強(qiáng)學(xué)
生的表現(xiàn)力和自信心、提高學(xué)生的綜合素質(zhì)等有重要意義.為推進(jìn)音樂素養(yǎng)教育,培養(yǎng)學(xué)生的綜合能力,某
校開設(shè)了一年的音樂素養(yǎng)選修課,包括一個(gè)聲樂班和一個(gè)器樂班,已知聲樂班的學(xué)生有24名,器樂班的
學(xué)生有28名,課程結(jié)束后兩個(gè)班分別舉行音樂素養(yǎng)過關(guān)測(cè)試,且每人是否通過測(cè)試是相互獨(dú)立的.
(1)聲樂班的學(xué)生全部進(jìn)行測(cè)試.若聲樂班每名學(xué)生通過測(cè)試的概率都為P(O<P<1),設(shè)聲樂班的學(xué)生
中恰有3名通過測(cè)試的概率為/(同,求/(#的極大值點(diǎn)p0.
(2)器樂班采用分層隨機(jī)抽樣的方法進(jìn)行測(cè)試.若器樂班的學(xué)生中有4人學(xué)習(xí)鋼琴,有8人學(xué)習(xí)小提琴,
有16人學(xué)習(xí)電子琴,按學(xué)習(xí)的樂器利用分層隨機(jī)抽樣的方法從器樂班的學(xué)生中抽取7人,再從抽取的7
人中隨機(jī)抽取3人進(jìn)行測(cè)試,設(shè)抽到學(xué)習(xí)電子琴的學(xué)生人數(shù)為?,求7的分布列及數(shù)學(xué)期望.
18.(本小題滿分17分)
已知數(shù)列{%}為等比數(shù)列,{d}為等差數(shù)列,且勾=偽=2,%=8%,%=4.
(1)求{4},{%}的通項(xiàng)公式;
>的前〃項(xiàng)和為S”,集合n共有個(gè)元素,
(2)數(shù)列(—1)412)」也2A=$4neN*5
、n-a”+2_
求實(shí)數(shù)/的取值范圍;
r_1r=log2。"
(3)若數(shù)列{c,}中,/人求證:
4"一
G+q?+q?0?%+…+q?&?%.......Cn<2
19.(本小題滿分17分)
設(shè)有〃維向量,[瓦=砧[+a2b2H---Fanbn為向量值和B的內(nèi)積,
當(dāng),石]=0,稱向量1和B正交.設(shè)Sn為全體由-1和1構(gòu)成的〃元數(shù)組對(duì)應(yīng)的向量的集合.
(1)若值=,寫出一個(gè)向量B,使得[%B]=o;
(2)令3={[京列元yeS.}.若加68,證明:〃為偶數(shù);
(3)若〃=4,/(4)是從S4中選出向量的個(gè)數(shù)的最大值,且選出的向量均滿足[扇B]=0,猜測(cè)/(4)的
值,并給出一個(gè)實(shí)例.
長(zhǎng)郡中學(xué)2025屆高三第一次調(diào)研考試
數(shù)學(xué)參考答案
與C的方程V=2px(聯(lián)立得V—2py—p2=0,
設(shè)4(玉,%),3(%2?2),則%+%=2p=2,p=l,故C的方程為J/=2x,p];,0
由拋物線定義可知點(diǎn)P到準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,
聯(lián)立拋物線C::/=2x與直線/:3x+2y+3=0,化簡(jiǎn)得9必+10x+9=0,
由△=100—4x9x9=—224<0得C與/相離.
。,5,尺分別是過點(diǎn)尸向準(zhǔn)線、直線/:3%+2丁+3=0以及
過點(diǎn)F向直線/:3x+2y+3=0引垂線的垂足,連接FP,FS,
所以點(diǎn)P到C的準(zhǔn)線的距離與點(diǎn)P到直線I的距離之和|PQ|+|PS卜|PF|+|PS|>\FS\>|F7?|,
等號(hào)成立當(dāng)且僅當(dāng)點(diǎn)P為線段FR與拋物線的交點(diǎn),
所以尸到C的準(zhǔn)線的距離與P到I的距離之和的最小值為
(113x—F0+3/-
點(diǎn)尸5,。到直線/:3%+2丁+3=0的距離,即底_3_9J13.
')?-26
故選:D.
7.A【解析】設(shè)函數(shù)“X)的最小正周期為T,
因?yàn)楹瘮?shù)/(X)在-白,0上單調(diào)遞增,
兀得女
所以0—因此0<口<10.
102G5
兀
由小+段7-----X知/(X)的圖象關(guān)于直線X=2對(duì)稱,
12
兀兀
則CD,(D—k,Tl—,k,GZ①.
122
由/(》)+/[曰—x]=0知/(X)的圖象關(guān)于點(diǎn)對(duì)稱,則0-:+夕=左2兀,k2eZ②.
兀兀
②-①得。?一二(左2—勺)兀——,k^keZ,令k=k?一k[,則。=6左一3,左eZ,
622
結(jié)合0<0(10可得0=3或9.
當(dāng)刃=3時(shí),代入(1)得0=—卜k[7i,k[GZ,又|。|<—,所以/=—,
41124
C兀、L,、r兀r兀兀
此時(shí)/(%)=2sin3xH—,因?yàn)?---<3xH—<一,
4)2044
故/(x)在-白,0上單調(diào)遞增,符合題意;
當(dāng)0=9時(shí),代入(1)得°=---1■尢兀,左]CZ,又|同<—,所以°=—,
41124
此時(shí)/(%)=2si“9x—,因?yàn)橐籢^<9x—£<一:,
故/(x)在-A,0上不是單調(diào)遞增的,所以。=9不符合題意,應(yīng)舍去.
綜上,口的值為3.
故選:A.
8.A【解析】在長(zhǎng)方體ABCD—AB'C'。'中,AB//CD',
則直線AB與I的夾角等于直線CD'與I的夾角.
長(zhǎng)方體ABC。一AB'C'。'中,45=30=2,44=J5,。為正方形ABC。的中心點(diǎn),則
2
"722+22>
OD'=OC'=+(V2)2=2,又CD'=2,
2
\7
所以口0c'£>'是等邊三角形,故直線。。與CD'的夾角為60°.
則CD'繞直線旋轉(zhuǎn)的軌跡為圓錐,如圖所示,ZC'D'O=600.
D'
因?yàn)橹本€。。'與a所成的角為53°,/所以直線。。'與/的夾角為37°.
在平面C'D'。中,作D'E,D'F,使得NODE=NOD'F=37°.
結(jié)合圖形可知,當(dāng)/與直線D'E平行時(shí),C'。'與/的夾角最小,為/C7XE=60°—37°=23°,
易知NC'D'F=60°+37°=97°.
設(shè)直線CZ>'與/的夾角為。,則23°W0W90°,故當(dāng)°=23°時(shí)sin°最小,
而sin23°=sin(60°-37°)=sin60°cos37°-cos60°sin37°
=sin60°sin53°-cos60°cos53°?-->
10
故直線AB與l的夾角的正弦值的最小值為31二1.
10
故選:A
二,多選題:本題共3小題,每小題6分,共18分.
9.AD
10.AD
11.BD【解析】由〃十=十c,可得|〃一。|+a+Z?=弧一+Z?+c,Bp—/?|—|/?—c|=c—ci,若
a<b,c<b,可得,一耳―忸一。|=c—a,符合題意,
若a4b,c>b,可得,一〃—卜一d=26-a-c,不符合題意,
若a>b,c《b,可得向一也一耳=a-c,不符合題意,
若a>b,c>b,可得,一耳―忸一@=c+a-26,不符合題意,
綜上所述。一。402一。之0,可得b?a,bNc,
故只需判斷四個(gè)選項(xiàng)中的〃是否為最大值即可.
對(duì)于A,B,而0<。.產(chǎn)<0.4°=1,
03
log050.4>log050.5=1,所以-log。$0.3<O.4<log050.4.
(點(diǎn)撥:函數(shù)_y=logo^x為減函數(shù),y=04'.為減函數(shù)),
對(duì)于A,a<b<c;對(duì)于B,c<a<b,故A錯(cuò)誤,B正確.
對(duì)于c,D等3="5
e(L1
(將0.9轉(zhuǎn)化為1—0.1,方便構(gòu)造函數(shù))構(gòu)造函數(shù)4%)=(1—
則/'(x)=—xe"因?yàn)闊oe[0,l),所以r(x)V0"(x)單調(diào)遞減,
因?yàn)?0)=1,所以
即0.90°1<1,所以0.09〈邛.
e,
(若找選項(xiàng)中的最大值,下面只需判斷2」與也”的大小即可)
e019
0.1,100.1,
-7rT-ln——---InI=撲1心事+叩一°.1)’
e019e01
1-x__1_(l-x)2-ex
構(gòu)造函數(shù)%(x)=2+ln(l—x),xe[0,1),貝ij=
ee"1-xe'(l-x),
因?yàn)楣ぁ闧0,1),所以e光(1—%)>0,令=(1—%)2—e",貝ij〃(%)二—2(1—%)—e”,
當(dāng)xe[0,l)時(shí),單調(diào)遞減,因?yàn)?lt;?⑼=0,
所以°(x)V0,即單調(diào)遞減,又"(0)=0,所以力(0.1)<0,
即-5T+1口(1—0.1)<0,所以—^y<ln石.
eey
綜上,0.09<23<In3.對(duì)于C,a<b<c;對(duì)于D,c<a<b,故C錯(cuò)誤,D正確.
e019
(提醒:本題要比較0。9與InW的大小關(guān)系的話可以利用作差法判斷,
9
即0.09-lnW=0.1x0.9-lnI=(1-0.9)x0.9+ln0.9,
9
構(gòu)造函數(shù)g(x)=(l-尤)x+lnx,無e(0,l],
T12f+x+l一(2x+l)(-x+l)
則g'(x)-1―N4?——
XXX
因?yàn)閤e(O,l],所以g〈x"0,g(x)單調(diào)遞增,因?yàn)間⑴=0,所以g(0.9)<0,
即0.09—In3<0,所以0.09<lnW)
99
故選:BD.
三、填空題:本題共3小題,每小題5分,共15分.
13i
12.-----
55
【解析】由于復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)為(1,1),所以Z=l+i,
法2-z1—i(1-i)(2-i)1—3i13i
改1+z2+i(2+i)(2-i)555
1r\?
故答案為:--y
13.n-4(答案不唯一)
14.35;14
四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
15.【解析】(1)設(shè)G(x,y),M(Xo,%),則"(%,0),因G為口。的重心,
2%
x=
a3_x<-?c丫2
故有:\,解得%:7,%=3y,代入x;+y:=9,化簡(jiǎn)得一+y2=1,
A24
y=
3
又1為力0,故孫wo,所以G的軌跡方程為、+丁=1(孫片0).
(2)因“為DABQ的垂心,故有ABLZ/CAHLBQ,
又如2=”^=—,,所以分=JL故設(shè)直線/的方程為y=gx+根(根wl),
2
與?+>2=1聯(lián)立消去丁得:13x2+8V3mx+4m2-4=0,
由△=208—16根2>0得根2<13,
設(shè)4(%,%),5(元2,%),則%+%=~~~~~^x\x2=4北§4
由AS%,得小??一,
+m-l=0,
所以4再入2+6(加一1)(%1+犬2)+m2—冽=0,
所以4(4機(jī)2一4)一24根(加-1)+13(機(jī)2-機(jī))=0,化簡(jiǎn)得5根2+11加—16=0,
[A1A
解得加=1(舍去)或加=-((滿足A〉。),故直線/的方程為y=Gx-
16.【解析】(1)?.?E是比)的中點(diǎn),.?.DELEE.
要滿足DE1平面BEG,需滿足DE,BG,
又VDEu平面BDE,平面BEG1平面BDE
如圖,過3作下底面的垂線交下底面于點(diǎn)G,
過G作BE的平行線,交圓儀于G,G2,則線段G1G2即點(diǎn)G的軌跡.
(2)易知可以&為坐標(biāo)原點(diǎn),QCQOi所在直線分別為V,
z軸建立如圖所示的空間直角坐標(biāo)系O2-xyz,
???母線長(zhǎng)為后,母線與底面所成角為45°,AC=28。,
O2A=2,OXB=1,OXO2=1,
取K的位置如圖所示,連接&K,
2CK=AC,NCO2K=60°,即NxO2K=30°,
則K(省』,0),4(0,-2,0),3(0,-1』),。(0,2,0),。(0』,1),
則數(shù)=(百,3,0),尿=(百,2,-1),次=(百,-1,0),派=(百,0,-
設(shè)平面A3K的法向量為力=(石,%,4),
n-AK=0Vs%1+3%=0
則《即<
n-BK=0\/3%1+2yl-zl=Q
令X[=#>,則Zi=1,%五=(百,一1,1).
設(shè)平面C£>K的法向量為前=(X2,%,Z2),
m-CK=0
則《
m-DK=0
令%=G,則z2=3,y2=3,m=(百,3,3).
設(shè)平面A3K與平面CDK所成的角為。,則
\n-m\_|V3xV3+(-l)x3+lx3|_
|cos^|=
|n|-|m|V5XA/2135
4>/70
sind=Vl-cos2^=
35
17.【解析】(1)24名學(xué)生中恰有3名通過測(cè)試的概率〃p)=C>p3(i—°)2i,
則/'(〃)=C;4[3p2(l—p)21—21p3(1—020[=C>3/.(—p)2O(_8p),0<p<],
令/'(同=0,得“=:,
o
所以當(dāng)O<P<:時(shí),r(p)〉o,/(同單調(diào)遞增;
8
當(dāng):<p<l時(shí),/'(p)<0,/(p)單調(diào)遞減,
故的極大值點(diǎn)為=;
8
(2)利用分層隨機(jī)抽樣的方法從28名學(xué)生中抽取7名,
則7名學(xué)生中學(xué)習(xí)鋼琴的有1名,學(xué)習(xí)小提琴的有2名,學(xué)習(xí)電子琴的有4名,所以,的所有可能取值為
0,1,2,3,
「3119
尸(,=o)=*=(,P(7=1)=妥=1|
心2)=詈T,PS)噌I,
則隨機(jī)變量7的分布列為
70123
112184
p
35353535
E()=0xLlxU+2x"+3xJU
、,353535357
18.【解析】⑴設(shè)數(shù)列{%,}公比的為4,數(shù)列低}公差的為d
x
則由4=8a5,d=8q=2,.l.an=a^c['=2",
。4=b?=16,即4=2+7d=16.1.d=2,bn=2+("—1)2=2”.
⑵設(shè)4=(/"哈哥"2
則d4n+d4n?+d4n_2+d4n_3=%+/T—4_2—/-3=128〃—48
二$4"=(4+12+4+[4)+…+(d"-3+dg+dAn_x+d4n)
_"(128〃-48+80)
-2
=〃(64〃+16)
,SQL(64”+16)?2(〃+2)(32〃+8加+2)
"nq+22”+22"
令〃“)=(32"+?〃+2),
則/(“+l)―/(7)=(32"+
2”+I2"+i
_-32H2-8?+88_4(-4?2-?+n),
可得"1)<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 長(zhǎng)沙學(xué)院《衛(wèi)星通信系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 述職報(bào)告招聘留存模板
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》名師預(yù)測(cè)卷5
- 同學(xué)聚會(huì)發(fā)言稿
- 人教版四年級(jí)數(shù)學(xué)上冊(cè)寒假作業(yè)(十四)巧數(shù)圖形(含答案)
- 陜西省西安市部分學(xué)校2024-2025學(xué)年高二上學(xué)期第四次階段性檢測(cè)生物試卷(有答案)
- 二零二五版全國(guó)知識(shí)產(chǎn)權(quán)代理公司商標(biāo)轉(zhuǎn)讓及運(yùn)營(yíng)管理合同2篇
- 二零二五版國(guó)際貿(mào)易仲裁條款適用合同模板2篇
- 延安大學(xué)西安創(chuàng)新學(xué)院《地圖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 產(chǎn)權(quán)技術(shù)合同在產(chǎn)學(xué)研合作中的優(yōu)化路徑研究
- 2024-2025學(xué)年九年級(jí)語文上學(xué)期第三次月考模擬卷(統(tǒng)編版)
- 法人代持免責(zé)任協(xié)議書(2篇)
- 產(chǎn)業(yè)鏈治理協(xié)同性
- 閘站監(jiān)理實(shí)施細(xì)則
- 高三課題研究報(bào)告范文
- 2024年初三數(shù)學(xué)競(jìng)賽考試試題
- 竇性心動(dòng)過速的危害
- 深基坑工程基坑土方開挖及支護(hù)降水施工方案
- 2024年江西生物科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫帶解析答案
- 醫(yī)藥制造企業(yè)資本結(jié)構(gòu)優(yōu)化研究以貴州百靈為例
- GB 31335-2024鐵礦開采和選礦單位產(chǎn)品能源消耗限額
評(píng)論
0/150
提交評(píng)論