版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆海南省三亞市天涯區(qū)三亞華僑學(xué)校數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線內(nèi)一點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),且點(diǎn)為弦的中點(diǎn),則直線的方程為()A. B.C D.2.已知直線,,點(diǎn)是拋物線上一點(diǎn),則點(diǎn)到直線和的距離之和的最小值為()A.2 B.C.3 D.3.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或4.已知l,m是兩條不同的直線,是兩個(gè)不同的平面,且,則()A.若,則 B.若,則C.若,則 D.若,則5.記等比數(shù)列的前項(xiàng)和為,若,,則()A.12 B.18C.21 D.276.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長(zhǎng)為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.8.將5名北京冬奧會(huì)志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個(gè)項(xiàng)目進(jìn)行培訓(xùn),每名志愿者只分配到1個(gè)項(xiàng)目,每個(gè)項(xiàng)目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種9.在四棱錐中,底面ABCD是正方形,E為PD中點(diǎn),若,,,則()A. B.C. D.10.圓關(guān)于直線對(duì)稱,則的最小值是()A. B.C. D.11.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.212.已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,則下列說(shuō)法錯(cuò)誤的是()A.數(shù)列一定是等比數(shù)列 B.數(shù)列一定是等差數(shù)列C.數(shù)列一定是等差數(shù)列 D.數(shù)列可能是常數(shù)數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.若數(shù)列滿足,,則__________14.如圖,棱長(zhǎng)為1的正方體,點(diǎn)沿正方形按的方向作勻速運(yùn)動(dòng),點(diǎn)沿正方形按的方向以同樣的速度作勻速運(yùn)動(dòng),且點(diǎn)分別從點(diǎn)A與點(diǎn)同時(shí)出發(fā),則的中點(diǎn)的軌跡所圍成圖形的面積大小是________.15.若雙曲線的漸近線與圓相切,則該雙曲線的實(shí)軸長(zhǎng)為_(kāi)_____16.已知,,,,使得成立,則實(shí)數(shù)a的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)為數(shù)列的前n項(xiàng)和,且滿足(1)求證:數(shù)列為等差數(shù)列;(2)若,且成等比數(shù)列,求數(shù)列的前項(xiàng)和18.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x經(jīng)過(guò)點(diǎn)A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點(diǎn).(1)若,求直線l的方程;(2)當(dāng)AM⊥AN時(shí),若對(duì)任意滿足條件的實(shí)數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.19.(12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,的面積為1.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)是拋物線上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過(guò)作軸的垂線交拋物線于點(diǎn),求證:直線過(guò)定點(diǎn).20.(12分)如圖,在直棱柱中,已知,點(diǎn)分別的中點(diǎn).(1)求異面直線與所成的角的大?。唬?)求點(diǎn)到平面的距離;(3)在棱上是否存在一點(diǎn),使得直線與平面所成的角的大小是?若存在,請(qǐng)指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.21.(12分)已知橢圓的左、右焦點(diǎn)分別為,,且橢圓過(guò)點(diǎn),離心率,為坐標(biāo)原點(diǎn),過(guò)且不平行于坐標(biāo)軸的動(dòng)直線與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知拋物線:的焦點(diǎn)是圓與軸的一個(gè)交點(diǎn).(1)求拋物線的方程;(2)若過(guò)點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,О為坐標(biāo)原點(diǎn),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用點(diǎn)差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.2、C【解析】由拋物線的定義可知點(diǎn)到直線和的距離之和的最小值即為焦點(diǎn)到直線的距離.【詳解】解:由題意,拋物線的焦點(diǎn)為,準(zhǔn)線為,所以根據(jù)拋物線的定義可得點(diǎn)到直線的距離等于,所以點(diǎn)到直線和的距離之和的最小值即為焦點(diǎn)到直線的距離,故選:C.3、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題4、B【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系分析選項(xiàng)A,C,D,由平面與平面垂直的判定定理判定選項(xiàng)D.【詳解】選項(xiàng)A.由,,直線l,m可能相交、平行,異面,故不正確.選項(xiàng)B.由,,則,故正確.選項(xiàng)C.由,,直線l,m可能相交、平行,異面,故不正確.選項(xiàng)D.由,,則可能相交,可能平行,故不正確.故選:B5、C【解析】根據(jù)等比數(shù)列的性質(zhì),可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項(xiàng)性質(zhì)即可求出結(jié)果.【詳解】因?yàn)闉榈缺葦?shù)列的前項(xiàng)和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C6、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時(shí),數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.7、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B8、C【解析】先確定有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個(gè)項(xiàng)目中分配2名志愿者,其余各項(xiàng)目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個(gè)小組,有種選法;然后連同其余三人,看成四個(gè)元素,四個(gè)項(xiàng)目看成四個(gè)不同的位置,四個(gè)不同的元素在四個(gè)不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用問(wèn)題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.9、C【解析】根據(jù)向量線性運(yùn)算法則計(jì)算即可.【詳解】故選:C10、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過(guò)圓心,從而可得,然后由,展開(kāi)利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因?yàn)閳A關(guān)于直線對(duì)稱,該直線經(jīng)過(guò)圓心,即,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故選:C.11、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因?yàn)锳=B,若,解得,當(dāng)時(shí),不滿足互異性,舍去,當(dāng)時(shí),A={1,-1,b},B={1,-1,-b},因?yàn)锳=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點(diǎn)睛】本題考查兩集合相等的概念,在集合相等問(wèn)題中由一個(gè)條件求出參數(shù)后需進(jìn)行代入檢驗(yàn),檢驗(yàn)是否滿足互異性、題設(shè)條件等,屬基礎(chǔ)題.12、B【解析】可根據(jù)已知條件,設(shè)出公差為,選項(xiàng)A,可借助等比數(shù)列的定義使用數(shù)列是等差數(shù)列,來(lái)進(jìn)行判定;選項(xiàng)B,數(shù)列,可以取,即可判斷;選項(xiàng)C,可設(shè),表示出再進(jìn)行判斷;選項(xiàng)D,可采用換元,令,求得的關(guān)系即可判斷.【詳解】數(shù)列是等差數(shù)列,設(shè)公差為,選項(xiàng)A,數(shù)列是等差數(shù)列,那么為常數(shù),又,則數(shù)列一定是等比數(shù)列,所以選項(xiàng)A正確;選項(xiàng)B,當(dāng)時(shí),數(shù)列不存在,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,數(shù)列是等差數(shù)列,可設(shè)(A、B為常數(shù)),此時(shí),,則為常數(shù),故數(shù)列一定是等差數(shù)列,所以該選項(xiàng)正確;選項(xiàng)D,,則,當(dāng)時(shí),,此時(shí)數(shù)列可能是常數(shù)數(shù)列,故該選項(xiàng)正確.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:714、##【解析】畫(huà)出符合要求的圖形,觀察得到軌跡是菱形,并進(jìn)行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進(jìn)行證明:菱形EFGC的周界即為動(dòng)線段PQ的中點(diǎn)H的軌跡,首先證明:如果點(diǎn)H是動(dòng)線段PQ的中點(diǎn),那么點(diǎn)H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個(gè)定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時(shí)從到C,由于速度相同,所以PQ必平行于,故PQ的中點(diǎn)H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時(shí)Q從到,由于速度相同,則,由于H為PQ的中點(diǎn),連接并延長(zhǎng),交底面ABCD于點(diǎn)T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點(diǎn)一定在菱形EFGC的周界上;下面證明:如果點(diǎn)H在菱形EFGC的周界上,則點(diǎn)H必定是符合條件的線段的中點(diǎn).也分兩種情況進(jìn)行證明:(1)H在CG或CE上,過(guò)點(diǎn)H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點(diǎn),同時(shí)可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長(zhǎng),交平面AC于點(diǎn)T,顯然T在AC上,過(guò)T作TP∥CB于點(diǎn)P,則TP∥,在平面上,連接PH并延長(zhǎng),交于點(diǎn)Q,在三角形中,G是的中點(diǎn),∥AC,則H是的中點(diǎn),于是,從而有,又因?yàn)門P∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點(diǎn),則H必是符合題設(shè)條件的動(dòng)線段PQ的中點(diǎn),證畢.因?yàn)樗倪呅螢榱庑?,其中,所以邊長(zhǎng)為且,為等邊三角形,,所以面積.故答案為:【點(diǎn)睛】對(duì)于立體幾何軌跡問(wèn)題,要畫(huà)出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識(shí),大膽猜測(cè),小心驗(yàn)證,對(duì)于多種情況的,要畫(huà)出相應(yīng)的圖形,注意分類討論.15、【解析】由雙曲線方程寫出漸近線,根據(jù)相切關(guān)系,結(jié)合點(diǎn)線距離公式求參數(shù)a,即可確定實(shí)軸長(zhǎng).【詳解】由題設(shè),漸近線方程為,且圓心為,半徑為1,所以,由相切關(guān)系知:,可得,又,即,所以雙曲線的實(shí)軸長(zhǎng)為.故答案為:16、【解析】由題可得,求導(dǎo)可得的單調(diào)性,將的最小值代入,即得.【詳解】∵,,使得成立,∴由,得,當(dāng)時(shí),,∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為又在上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為,∴,即實(shí)數(shù)的取值范圍是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)答案見(jiàn)解析.【解析】(1)利用給定的遞推公式,結(jié)合“當(dāng)時(shí),”變形,再利用等差中項(xiàng)的定義推理作答.(2)利用(1)的結(jié)論,利用等比中項(xiàng)的定義列式計(jì)算,再利用等差數(shù)列前n項(xiàng)和公式計(jì)算作答.【小問(wèn)1詳解】依題意,,當(dāng)時(shí),有,兩式相減得:,同理可得,于是得,即,而當(dāng)時(shí),,所以數(shù)列為等差數(shù)列.【小問(wèn)2詳解】由(1)知數(shù)列為等差數(shù)列,設(shè)其首項(xiàng)為,公差為d,依題意,,解得或,當(dāng)時(shí),,當(dāng)時(shí),.18、(1)(2)3或【解析】(1)由可得,則可得直線為,設(shè),然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系,由可得,三個(gè)式子結(jié)合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系表示出,再結(jié)合直線方程表示出,由AM⊥AN可得,化簡(jiǎn)結(jié)合前面的式子可求出或,從而可可求出的值,進(jìn)而可求得答案【小問(wèn)1詳解】因?yàn)锳(1,2),,所以,則直線為,設(shè),由,得,由,得則,因?yàn)?,所以,所以,所以,所以,解得,所以直線的方程為,即,【小問(wèn)2詳解】設(shè),由,得,由,得,則,所以,,因?yàn)锳M⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或19、(1)(2)證明見(jiàn)解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點(diǎn)共線,可證明直線過(guò)定點(diǎn),方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡(jiǎn),可證明直線過(guò)定點(diǎn).【小問(wèn)1詳解】因?yàn)辄c(diǎn)在拋物線上,所以,即,,因?yàn)?,故解得,拋物線的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時(shí),,此時(shí)直線的方程為,若時(shí),因?yàn)槿c(diǎn)共線,所以,即,又因?yàn)?,,化?jiǎn)可得,又,進(jìn)而可得,整理得,因?yàn)樗?,此時(shí)直線的方程為,直線恒過(guò)定點(diǎn)又直線也過(guò)點(diǎn),綜上:直線過(guò)定點(diǎn)解法二:設(shè)方程,得若直線斜率存在時(shí)斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過(guò)定點(diǎn).若直線斜率不存在時(shí),直線方程為所以P點(diǎn)坐標(biāo)為,M點(diǎn)坐標(biāo)為此時(shí)直線方程為過(guò)點(diǎn)綜上:直線過(guò)定點(diǎn).【點(diǎn)睛】解決直線與拋物線的綜合問(wèn)題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、拋物線的條件;(2)強(qiáng)化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題20、(1)(2)(3)不存在,理由見(jiàn)解析【解析】(1)由題意,以點(diǎn)A為原點(diǎn),方向分別為x軸、y軸與z軸的正方向,建立空間直角坐標(biāo)系.,利用向量法求解異面直線成角即可.(2)先求出平面DEF的一個(gè)法向量,然后利用向量法求解點(diǎn)面距離.(3)設(shè)(),由可得關(guān)于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)3萬(wàn)臺(tái)新能源汽車電機(jī)及1500臺(tái)風(fēng)力發(fā)電機(jī)配套沖片項(xiàng)目可行性研究報(bào)告寫作模板-申批備案
- 2025-2030全球?qū)ΨQ槳行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球活細(xì)胞代謝分析儀行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 代辦服務(wù)合同
- 電梯承包施工合同范本
- 2025項(xiàng)目居間合同
- 事業(yè)單位聘用合同分為4類
- 2025勞務(wù)外包合同范本
- 2025產(chǎn)品授權(quán)經(jīng)銷合同
- 2025二手房的協(xié)議書(shū)范本及注意事項(xiàng)(合同協(xié)議范本)
- 江蘇省駕校考試科目一考試題庫(kù)
- 四川省成都市青羊區(qū)成都市石室聯(lián)合中學(xué)2023-2024學(xué)年七上期末數(shù)學(xué)試題(解析版)
- 咨詢公司績(jī)效工資分配實(shí)施方案
- 2025新人教版英語(yǔ)七年級(jí)下單詞表
- 中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-氣管切開(kāi)非機(jī)械通氣患者氣道護(hù)理
- 未成年入職免責(zé)協(xié)議書(shū)
- 光伏電站巡檢專項(xiàng)方案
- 2024年山東省東營(yíng)市中考數(shù)學(xué)試題 (原卷版)
- 公司員工外派協(xié)議書(shū)范文
- 信息科技重大版 七年級(jí)上冊(cè) 互聯(lián)網(wǎng)應(yīng)用與創(chuàng)新 第二單元教學(xué)設(shè)計(jì) 互聯(lián)網(wǎng)原理
- 肺栓塞的護(hù)理查房完整版
評(píng)論
0/150
提交評(píng)論