重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁(yè)
重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁(yè)
重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁(yè)
重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁(yè)
重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶江北區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.362.設(shè)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.43.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.84.中國(guó)大運(yùn)河項(xiàng)目成功人選世界文化遺產(chǎn)名錄,成為中國(guó)第46個(gè)世界遺產(chǎn)項(xiàng)目,隨著對(duì)大運(yùn)河的保護(hù)與開發(fā),大運(yùn)河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團(tuán)乘游船從奧體公園碼頭出發(fā)順流而下至漕運(yùn)碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹?,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.5.等差數(shù)列中,,,則()A.1 B.2C.3 D.46.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.87.已知拋物線C:的焦點(diǎn)為F,過(guò)點(diǎn)P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點(diǎn),則()A. B.14C. D.158.已知直線和圓相交于兩點(diǎn).若,則的值為()A. B.C. D.9.圓關(guān)于直線對(duì)稱,則的最小值是()A. B.C. D.10.若函數(shù)有零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.11.曲線的離心率為()A. B.C. D.12.若函數(shù)恰好有個(gè)不同的零點(diǎn),則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若斜率為的直線與橢圓交于,兩點(diǎn),且的中點(diǎn)坐標(biāo)為,則___________.14.已知數(shù)列的前項(xiàng)和為,則__________.15.已知數(shù)列的前n項(xiàng)和為,則______16.已知三個(gè)數(shù)2,,6成等比數(shù)列,則實(shí)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求a的取值范圍.18.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列的前項(xiàng)和.19.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點(diǎn)在線段含端點(diǎn)上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.20.(12分)在中,角A,B,C所對(duì)的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長(zhǎng).21.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的極值;(2)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.22.(10分)已知拋物線C的方程為:,點(diǎn)(1)若直線與拋物線C相交于A、B兩點(diǎn),且P為線段AB的中點(diǎn),求直線的方程.(2)若直線過(guò)交拋物線C于M,N兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),求的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點(diǎn)睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問(wèn)題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問(wèn)題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.2、A【解析】由正弦定理求解即可.【詳解】因?yàn)?,所以故選:A3、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.4、A【解析】求出平均速度V,進(jìn)而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運(yùn)公園碼頭到漕運(yùn)碼頭之間的距離為1,則游船順流而下的時(shí)間為,逆流而上的時(shí)間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時(shí),兩個(gè)不等式都取得“=”,而根據(jù)題意,于是.故選:A.5、B【解析】根據(jù)給定條件利用等差數(shù)列性質(zhì)直接計(jì)算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B6、D【解析】使用遞推公式逐個(gè)求解,直到求出即可.【詳解】因?yàn)樗?,,?故選:D7、C【解析】設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡(jiǎn),進(jìn)而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點(diǎn)坐標(biāo)分別為,,直線的方程為,拋物線的準(zhǔn)線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.8、C【解析】求出圓心到直線的距離,再利用,化簡(jiǎn)求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.9、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過(guò)圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因?yàn)閳A關(guān)于直線對(duì)稱,該直線經(jīng)過(guò)圓心,即,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故選:C.10、A【解析】設(shè),則函數(shù)有零點(diǎn)轉(zhuǎn)化為函數(shù)的圖象與直線有交點(diǎn),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求出【詳解】設(shè),定義域?yàn)?,則,易知為單調(diào)遞增函數(shù),且所以當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增,所以所以,即故選:A【點(diǎn)睛】本題主要考查根據(jù)函數(shù)有零點(diǎn)求參數(shù)的取值范圍,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題11、C【解析】由曲線方程直接求離心率即可.【詳解】由題設(shè),,,∴離心率.故選:C.12、D【解析】分析可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實(shí)數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)的圖象有個(gè)交點(diǎn),即函數(shù)有個(gè)零點(diǎn).故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】根據(jù)給定條件設(shè)出點(diǎn)A,B的坐標(biāo),再借助“點(diǎn)差法”即可計(jì)算得解.【詳解】依題意,線段的中點(diǎn)在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:14、【解析】根據(jù)題意求得,得到,利用等差數(shù)列的求和公式,求得,結(jié)合裂項(xiàng)法求和法,即可求解.【詳解】由,可得,即,因?yàn)?,所以,又因?yàn)?,所以,可得,所以,所?故答案為:.15、【解析】先通過(guò)裂項(xiàng)相消求出,再代入計(jì)算即可.【詳解】,則,故.故答案為:3.16、【解析】由題意可得,從而可求出的值【詳解】因?yàn)槿齻€(gè)數(shù)2,,6成等比數(shù)列,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對(duì)函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問(wèn)題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對(duì)進(jìn)行分類討論,其中當(dāng)和時(shí)易判斷函數(shù)的單調(diào)性以及最小值,而當(dāng)時(shí),的最小值與0進(jìn)一步判斷【小問(wèn)1詳解】當(dāng)時(shí),的定義域?yàn)椋?當(dāng)時(shí),,當(dāng)時(shí),,所以在上為增函數(shù),在上為減函數(shù).故有極大值,沒有極小值.【小問(wèn)2詳解】當(dāng)時(shí),恒成立等價(jià)于對(duì)于任意恒成立.令,則.若,則,所以在上單調(diào)遞減,所以,符合題意.若,所以在上單調(diào)遞減,,符合題意.若,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,不合題意.綜上可知,a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查了不等式恒成立問(wèn)題,其關(guān)鍵是構(gòu)造函數(shù),通過(guò)討論參數(shù)在不同取值范圍時(shí)函數(shù)的單調(diào)性,求出函數(shù)的最值,解出參數(shù)的范圍.必要時(shí)二次求導(dǎo).18、(1)(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個(gè)量的值,可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)法可求得,即可證得原不等式成立.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問(wèn)2詳解】證明:,因此,.故原不等式得證.19、(1)證明見解析(2)點(diǎn)與點(diǎn)重合時(shí),二面角的余弦值為【解析】(1)先利用平面幾何知識(shí)和余弦定理得到及各邊長(zhǎng)度,利用線面平行的性質(zhì)和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標(biāo)系,設(shè),寫出相關(guān)點(diǎn)的坐標(biāo),得到相關(guān)向量的坐標(biāo),利用平面的法向量夾角求出二面角的余弦值,再通過(guò)二次函數(shù)的最值進(jìn)行求解.【小問(wèn)1詳解】證明:在梯形中,因?yàn)?,,又因?yàn)?,所?,所以,即,解得,,所以,即.因?yàn)槠矫?,平面,所以,而平面平面,所以平?因?yàn)?,所以平?【小問(wèn)2詳解】解:分別以直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系(如圖所示),設(shè),則,所以,設(shè)為平面的一個(gè)法向量,由得,取,則,又是平面的一個(gè)法向量,設(shè)平面與平面所成銳二面角為,所以因?yàn)?,所以?dāng)時(shí),有最小值為,所以點(diǎn)與點(diǎn)重合時(shí),平面與平面所成二面角最大,此時(shí)二面角的余弦值為.20、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡(jiǎn)得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問(wèn)1詳解】解:因?yàn)?,所?由正弦定理得,可得,所以,因?yàn)椋?【小問(wèn)2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長(zhǎng)為.21、(1)函數(shù)在上遞增,在上遞減,極大值為,無(wú)極小值(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的符號(hào)求得單調(diào)區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問(wèn)題轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出函數(shù)的最大值即可得出答案.【小問(wèn)1詳解】解:當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論