




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶外國(guó)語(yǔ)學(xué)校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線C:的焦點(diǎn)為F,過(guò)點(diǎn)P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點(diǎn),則()A. B.14C. D.152.若方程表示焦點(diǎn)在y軸上的雙曲線,則實(shí)數(shù)m的取值范圍為()A. B.C. D.且3.已知點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,則()A. B.C. D.4.已知:,:,若是的充分不必要條件,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.在平行六面體中,點(diǎn)P在上,若,則()A. B.C. D.6.已知為兩條不同的直線,為兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則B.若,則C.若,則D.若,則7.已知函數(shù),則()A.0 B.1C.2 D.8.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.29.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.910.下列雙曲線中,漸近線方程為的是A. B.C. D.11.經(jīng)過(guò)直線與直線的交點(diǎn),且平行于直線的直線方程為()A. B.C. D.12.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動(dòng)點(diǎn)P(x,y)滿,則動(dòng)點(diǎn)P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切二、填空題:本題共4小題,每小題5分,共20分。13.將4名志愿者分配到3個(gè)不同的北京冬奧場(chǎng)館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的方案種數(shù)為_(kāi)_______.(用數(shù)字作答)14.不等式的解集是________.15.已知對(duì)任意正實(shí)數(shù)m,n,p,q,有如下結(jié)論成立:若,則有成立,現(xiàn)已知橢圓上存在一點(diǎn)P,,為其焦點(diǎn),在中,,,則橢圓的離心率為_(kāi)_____16.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知平行六面體中,底面ABCD是邊長(zhǎng)為1的正方形,,,設(shè),,(1)用,,表示,并求;(2)求18.(12分)在平面直角坐標(biāo)系中,已知點(diǎn),軸于點(diǎn),是線段上的動(dòng)點(diǎn),軸于點(diǎn),于點(diǎn),與相交于點(diǎn).(1)判斷點(diǎn)是否在拋物線上,并說(shuō)明理由;(2)過(guò)點(diǎn)作拋物線的切線交軸于點(diǎn),過(guò)拋物線上的點(diǎn)作拋物線的切線交軸于點(diǎn),……,以此類推,得到數(shù)列,求,及數(shù)列的通項(xiàng)公式.19.(12分)《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,其中第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):參考公式:,月份12345違章駕駛員人數(shù)1201051009580(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份x之間的回歸直線方程;(2)預(yù)測(cè)該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù);20.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(diǎn)(1)證明:(2)已知,求二面角的余弦值21.(12分)已知是公比不為1的等比數(shù)列,,且為的等差中項(xiàng).(1)求的公比;(2)求的通項(xiàng)公式及前n項(xiàng)和.22.(10分)設(shè)命題p:實(shí)數(shù)x滿足,其中;命題q:若,且為真,求實(shí)數(shù)x的取值范圍;若是的充分不必要條件,求實(shí)數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡(jiǎn),進(jìn)而結(jié)合根與系數(shù)的關(guān)系求得答案.【詳解】設(shè)A、B兩點(diǎn)坐標(biāo)分別為,,直線的方程為,拋物線的準(zhǔn)線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.2、A【解析】根據(jù)雙曲線定義,且焦點(diǎn)在y軸上,則可直接列出相關(guān)不等式.【詳解】若方程表示焦點(diǎn)在y軸上的雙曲線,則必有:,且解得:故選:3、C【解析】根據(jù)空間兩點(diǎn)間距離公式,結(jié)合對(duì)稱性進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,所以,因此,故選:C4、C【解析】由是的充分不必要條件,則是的充分不必要條件,再根據(jù)對(duì)應(yīng)集合的包含關(guān)系可得答案.【詳解】由,即,設(shè),由是的充分不必要條件,則是的充分不必要條件所以,則故選:C5、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進(jìn)行求解即可.【詳解】因?yàn)?,,所以有,因此,故選:C6、D【解析】根據(jù)空間里面直線與平面、平面與平面位置關(guān)系的相關(guān)定理逐項(xiàng)判斷即可.【詳解】A,若,則或異面,故該選項(xiàng)錯(cuò)誤;B,若,則或相交,故該選項(xiàng)錯(cuò)誤;C,若,則α,β不一定垂直,故該選項(xiàng)錯(cuò)誤;D,若,則利用面面垂直的性質(zhì)可得,故該選項(xiàng)正確.故選:D.7、C【解析】對(duì)函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點(diǎn)睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡(jiǎn)單題.8、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因?yàn)锳=B,若,解得,當(dāng)時(shí),不滿足互異性,舍去,當(dāng)時(shí),A={1,-1,b},B={1,-1,-b},因?yàn)锳=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點(diǎn)睛】本題考查兩集合相等的概念,在集合相等問(wèn)題中由一個(gè)條件求出參數(shù)后需進(jìn)行代入檢驗(yàn),檢驗(yàn)是否滿足互異性、題設(shè)條件等,屬基礎(chǔ)題.9、B【解析】首先地推公式變形,得,,求得數(shù)列的通項(xiàng)公式后,再解不等式.【詳解】因?yàn)?,兩邊取倒?shù),得,整理為:,,所以數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,,,因?yàn)?,即,得,解得:?所以的最大值是7.故選:B10、A【解析】由雙曲線的漸進(jìn)線的公式可行選項(xiàng)A的漸進(jìn)線方程為,故選A.考點(diǎn):本題主要考查雙曲線的漸近線公式.11、B【解析】求出兩直線的交點(diǎn)坐標(biāo),可設(shè)所求直線的方程為,將交點(diǎn)坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點(diǎn)坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.12、A【解析】首先求得點(diǎn)的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡(jiǎn)為:,動(dòng)點(diǎn)的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】先將4人分成2、1、1三組,再安排給3個(gè)不同的場(chǎng)館,由分步乘法計(jì)數(shù)原理可得.【詳解】將4人分到3個(gè)不同的體育場(chǎng)館,要求每個(gè)場(chǎng)館至少分配1人,則必須且只能有1個(gè)場(chǎng)館分得2人,其余的2個(gè)場(chǎng)館各1人,可先將4人分為2、1、1的三組,有種分組方法,再將分好的3組對(duì)應(yīng)3個(gè)場(chǎng)館,有種方法,則共有種分配方案.故答案為:3614、【解析】把原不等式的右邊移項(xiàng)到左邊,通分計(jì)算后,根據(jù)分式不等式解法,然后轉(zhuǎn)化為兩個(gè)一元一次不等式組,注意分母不為0的要求,求出不等式組的解集即為原不等式的解集【詳解】不等式得,故,故答案為:.15、【解析】根據(jù)正弦定理,結(jié)合題意,列出方程,代入數(shù)據(jù),化簡(jiǎn)即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:16、0【解析】設(shè)等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項(xiàng)公式可得結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,,因?yàn)?,,成等比?shù)列,所以,所以,整理得,因?yàn)?,所以,所?故答案為:0.【點(diǎn)睛】本題考查了等比中項(xiàng),考查了等差數(shù)列通項(xiàng)公式基本量運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)0【解析】(1)把,,作為基底,利用空間向量基本定理表示,然后根據(jù)已知的數(shù)據(jù)求,(2)先把用基底表示,然后化簡(jiǎn)求解【小問(wèn)1詳解】因?yàn)椋?,?所以,因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,,所以【小問(wèn)2詳解】因?yàn)?,底面ABCD是邊長(zhǎng)為1的正方形,,,所以18、(1)在拋物線上,理由見(jiàn)解析(2),,.【解析】(1)根據(jù)直線的方程設(shè)出點(diǎn)的坐標(biāo),利用已知條件求出點(diǎn)的坐標(biāo)即可判斷點(diǎn)是否在拋物線上;(2)設(shè)出直線的直線方程,與拋物線聯(lián)立,令,即可求出,同理可以求出,設(shè)出直線的直線方程,與拋物線聯(lián)立,令即可求出的方程,若令,,即,故數(shù)列是首項(xiàng),公比為的等比數(shù)列,即可求出數(shù)列的通項(xiàng)公式.【小問(wèn)1詳解】由已知條件得直線的方程為,設(shè)點(diǎn),則,由直線的方程為可得點(diǎn)的坐標(biāo)為,點(diǎn)滿足拋物線,則點(diǎn)是否在拋物線上;【小問(wèn)2詳解】設(shè)的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知,設(shè)的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知設(shè)點(diǎn),設(shè)直線方程為,將直線與拋物線聯(lián)立得,,其中,即,,解得,直線的方程為,即,令得,即直線過(guò)點(diǎn),則直線的斜率為,直線的方程也可以表示為,即,令,,即,則,即數(shù)列是首項(xiàng),公比為的等比數(shù)列,故.19、(1);(2)37【解析】(1)將題干數(shù)據(jù)代入公式求出與,進(jìn)而求出回歸直線方程;(2)再第一問(wèn)的基礎(chǔ)上代入求出結(jié)果.【小問(wèn)1詳解】,,則,,所以回歸直線方程;【小問(wèn)2詳解】令得:,故該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù)為37.20、(1)詳見(jiàn)解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標(biāo)系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問(wèn)1詳解】如圖,取的中點(diǎn),連結(jié),,,因?yàn)?,所以,因?yàn)槠矫嫫矫?,平面平面,所以平面,且平面,所以,又因?yàn)榈酌鏁r(shí)菱形,所以,又因?yàn)辄c(diǎn)分別為的中點(diǎn),所以,所以,且,所以平面,又因?yàn)槠矫妫?;【小?wèn)2詳解】由(1)可知,平面,連結(jié),因?yàn)椋?,點(diǎn)為的中點(diǎn),所以,則兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖所示:則,,,所以,,,,,,所以,,,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,所以,因?yàn)槎娼菫殇J二面角,所以二面角的余弦值為.21、(1)(2),【解析】(1)設(shè)數(shù)列公比為,根據(jù)列出方程,即可求解;(2):由(1)得到,利用等比數(shù)列的求和公式,即可求解.【小問(wèn)1詳解】解:設(shè)數(shù)列公比為,因?yàn)闉榈牡炔钪许?xiàng),可得,即,即,解得或(舍去),所以等比數(shù)列的公比為.【小問(wèn)2詳解】解:由(1)知且,可得,所以.22、(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025貨車駕駛員勞動(dòng)合同范本
- 《下消化道出血培訓(xùn)》課件
- (12)-專題06 感悟作文(練習(xí))
- 《新冠病毒防護(hù)指南》課件
- 九年級(jí)拓展活動(dòng)式主題班會(huì)別讓指尖劃破我們的夢(mèng)想 教學(xué)設(shè)計(jì)及反思
- 西安交通工程學(xué)院《自動(dòng)控制原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 信陽(yáng)涉外職業(yè)技術(shù)學(xué)院《物理化學(xué)實(shí)驗(yàn)1》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東文化產(chǎn)業(yè)職業(yè)學(xué)院《中國(guó)哲學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京師范大學(xué)中北學(xué)院《社會(huì)體育指導(dǎo)員一級(jí)》2023-2024學(xué)年第二學(xué)期期末試卷
- 皖北衛(wèi)生職業(yè)學(xué)院《地理信息系統(tǒng)導(dǎo)論實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 【MOOC】C語(yǔ)言程序設(shè)計(jì)-華中科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024年廣東省基本藥物合理使用技能競(jìng)賽理論考試題庫(kù)(附答案)
- 招投標(biāo)法律培訓(xùn)課件
- 結(jié)構(gòu)性存款培訓(xùn)課件
- 論委托代建合同的性質(zhì)與裁判路徑
- 獻(xiàn)血宣傳課件教學(xué)課件
- 汽車保修服務(wù)優(yōu)化方案
- 臨時(shí)用電安裝與拆除方案
- 部編版五年級(jí)語(yǔ)文下冊(cè)試卷第五單元測(cè)試卷
- 服裝生產(chǎn)授權(quán)委托書(shū)
- 口腔科水路清洗消毒制度
評(píng)論
0/150
提交評(píng)論