版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省蘇州外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖是一個(gè)程序框圖,執(zhí)行該程序框圖,則輸出的n值是()A.2 B.3C.4 D.52.已知,為雙曲線:的焦點(diǎn),為,(其中為雙曲線半焦距),與雙曲線的交點(diǎn),且有,則該雙曲線的離心率為()A. B.C. D.3.給出如下四個(gè)命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④4.某班新學(xué)期開學(xué)統(tǒng)計(jì)新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.5.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交6.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項(xiàng)和()A. B.C. D.7.已知實(shí)數(shù),,則下列不等式恒成立的是()A. B.C. D.8.關(guān)于實(shí)數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列9.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.10.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.11.已知集合,,則()A. B.C. D.12.已知等比數(shù)列的前n項(xiàng)和為,若,,則()A.250 B.210C.160 D.90二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:和圓:,動圓M同時(shí)與圓及圓外切,則動圓的圓心M的軌跡方程為______.14.已知p:x>a是q:2<x<3的必要不充分條件,則實(shí)數(shù)a的取值范圍是______.15.在平行六面體中,點(diǎn)P是AC與BD的交點(diǎn),若,且,則___________.16.已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和滿足,則__________;記表示不超過的最大整數(shù),例如,若,設(shè)的前項(xiàng)和為,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公比的等比數(shù)列和等差數(shù)列滿足:,,其中,且是和的等比中項(xiàng)(1)求數(shù)列與的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,若當(dāng)時(shí),等式恒成立,求實(shí)數(shù)的取值范圍18.(12分)已知圓:,定點(diǎn),Q為圓上的一動點(diǎn),點(diǎn)P在半徑CQ上,且,設(shè)點(diǎn)P的軌跡為曲線E.(1)求曲線E的方程;(2)過點(diǎn)的直線交曲線E于A,B兩點(diǎn),過點(diǎn)H與AB垂直的直線與x軸交于點(diǎn)N,當(dāng)取最大值時(shí),求直線AB的方程.19.(12分)已知兩動圓:和:,把它們的公共點(diǎn)的軌跡記為曲線,若曲線與軸的正半軸的交點(diǎn)為,取曲線上的相異兩點(diǎn)、滿足:且點(diǎn)與點(diǎn)均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);20.(12分)已知函數(shù)(a為非零常數(shù))(1)若f(x)在處的切線經(jīng)過點(diǎn)(2,ln2),求實(shí)數(shù)a的值;(2)有兩個(gè)極值點(diǎn),.①求實(shí)數(shù)a的取值范圍;②若,證明:.21.(12分)已知橢圓的上下兩個(gè)焦點(diǎn)分別為,,過點(diǎn)與y軸垂直的直線交橢圓C于M,N兩點(diǎn),△的面積為,橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知O為坐標(biāo)原點(diǎn),直線與y軸交于點(diǎn)P,與橢圓C交于A,B兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求m的取值范圍22.(10分)已知橢圓C:的長軸長為4,過C的一個(gè)焦點(diǎn)且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),且,求m的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】程序框圖中的循環(huán)結(jié)構(gòu),一般需重復(fù)計(jì)算,根據(jù)判斷框中的條件,確定何時(shí)終止循環(huán),輸出結(jié)果.【詳解】初始值:,當(dāng)時(shí),,進(jìn)入循環(huán);當(dāng)時(shí),,進(jìn)入循環(huán);當(dāng)時(shí),,終止循環(huán),輸出的值為3.故選:B2、B【解析】根據(jù)求得的關(guān)系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關(guān)系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點(diǎn)在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.3、A【解析】對選項(xiàng)①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項(xiàng)②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤。【詳解】對于①選項(xiàng),,,故①錯誤;對于②選項(xiàng),由題知,所以,所以離心率,故②錯誤;對于③選項(xiàng),拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對于④選項(xiàng),雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點(diǎn)在軸上,故漸近線方程是,故④錯誤.故選:A4、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D5、A【解析】計(jì)算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.6、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項(xiàng)和公式求解.【詳解】因?yàn)閿?shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個(gè)選項(xiàng)得到答案.【詳解】當(dāng)時(shí),不等式不成立,錯誤;,故錯誤正確;當(dāng)時(shí),不等式不成立,錯誤;故選:.【點(diǎn)睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對于不等式知識的綜合應(yīng)用.8、B【解析】根據(jù)給定條件結(jié)合取特值、推理計(jì)算等方法逐一分析各個(gè)選項(xiàng)并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實(shí)數(shù),若,顯然都可以為負(fù)數(shù)或者0,此時(shí)a,b,c無對數(shù),D不正確.故選:B9、A【解析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A10、D【解析】先求定義域,再求導(dǎo)數(shù),令解不等式,即可.【詳解】函數(shù)的定義域?yàn)榱?,解得故選:D【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.11、B【解析】根據(jù)根式、分式的性質(zhì)求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運(yùn)算求.【詳解】∵,,∴故選:B12、B【解析】設(shè)為等比數(shù)列,由此利用等比數(shù)列的前項(xiàng)和為能求出結(jié)果【詳解】設(shè),等比數(shù)列的前項(xiàng)和為為等比數(shù)列,為等比數(shù)列,解得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)動圓同時(shí)與圓及圓外切,即可得到幾何關(guān)系,再結(jié)合雙曲線的定義可得動點(diǎn)的軌跡方程.【詳解】由題,設(shè)動圓的半徑為,圓的半徑為,圓的半徑為,當(dāng)動圓與圓,圓外切時(shí),,,所以,因?yàn)閳A心,,即,又根據(jù)雙曲線的定義,得動點(diǎn)的軌跡為雙曲線的上支,其中,,所以,則動圓圓心的軌跡方程是;故答案為:14、【解析】根據(jù)充分性和必要性,求得參數(shù)取值范圍,即可求得結(jié)果.【詳解】因?yàn)閜:x>a是q:2<x<3的必要不充分條件,故集合為集合的真子集,故只需.故答案為:.15、【解析】由向量的運(yùn)算法則,求得,根據(jù),結(jié)合向量的數(shù)量積的運(yùn)算,即可求解.【詳解】由題意可得,,則,故.故答案為:16、①.;②.60.【解析】先根據(jù)并結(jié)合等差數(shù)列的定義求出;然后討論n的取值范圍,討論出分別取1,2,3,4,5的情況,進(jìn)而求出.【詳解】由題意,,n=1時(shí),,滿足,時(shí),,于是,,因?yàn)椋?所以,是1為首項(xiàng),2為公差的等差數(shù)列,所以.若,即時(shí),,若,則時(shí),,若,則時(shí),,若,則時(shí),,若,則或22時(shí),,于是,.故答案為:2n-1;60.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)已知條件可得出關(guān)于方程,解出的值,可求得的值,即可得出數(shù)列與的通項(xiàng)公式;(2)求得,利用錯位相減法可求得,分析可知數(shù)列為單調(diào)遞增數(shù)列,對分奇數(shù)和偶數(shù)兩種情況討論,結(jié)合參變量分離法可得出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)?,,,且是和的等比中?xiàng),所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因?yàn)?,①,②②①得因?yàn)?,即對恒成立,所以?dāng)且,,故數(shù)列為單調(diào)遞增數(shù)列,當(dāng)為偶數(shù)時(shí),,所以;當(dāng)為奇數(shù)時(shí),,所以,即.綜上可得18、(1)(2)或【解析】(1)結(jié)合已知條件可得到點(diǎn)P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結(jié)合已知條件設(shè)出直線的方程,然后聯(lián)立橢圓方程,利用弦長公式求出,再設(shè)出直線NH的方程,求出N點(diǎn)坐標(biāo),進(jìn)而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)為,∵,∴點(diǎn)P在線段QF垂直平分線上,∴,又∵,∴∴點(diǎn)P在以C,F(xiàn)為焦點(diǎn)的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設(shè)直線AB方程為,,由,解得,,解得,由韋達(dá)定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設(shè)則∴當(dāng)且僅當(dāng)即時(shí)等號成立,有最大值,此時(shí)滿足,故,所以直線AB的方程為:,即或.19、(1);(2)證明見解析,.【解析】(1)設(shè)兩動圓的公共點(diǎn)為,則有,運(yùn)用橢圓的定義,即可得到,,,進(jìn)而得到的軌跡方程;(2),設(shè),,,,設(shè)出直線方程,聯(lián)立方程組,利用韋達(dá)定理法及向量的數(shù)量積的坐標(biāo)表示,即可得到定點(diǎn).【小問1詳解】設(shè)兩動圓的公共點(diǎn)為,則有由橢圓的定義可知的軌跡為橢圓,設(shè)方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設(shè),,設(shè)直線:,聯(lián)立方程組,可得,,,因?yàn)椋杂?,把代入整理化簡得,或舍,因?yàn)辄c(diǎn)與點(diǎn)均不重合,所以直線恒過定點(diǎn)20、(1)(2)①(0,1);②證明見解析【解析】小問1先求出切線方程,再將點(diǎn)(2,ln2),代入即可求出a的值;小問2的①通過求導(dǎo),再結(jié)合函數(shù)的單調(diào)性求出a的取值范圍;②結(jié)合已知條件,構(gòu)造新函數(shù)即可得到證明.【小問1詳解】,∴切線方程為,將點(diǎn)代入解得:【小問2詳解】①當(dāng)時(shí),即時(shí),,f(x)在(-1,+∞)上單調(diào)遞增;f(x)無極值點(diǎn),當(dāng)時(shí),由得,,故f(x)在(-1,-)上單調(diào)遞增,在(-,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,f(x)有兩個(gè)極值點(diǎn);.當(dāng)時(shí),由得,,f(x)(,)上單調(diào)遞減,在(,+∞)上單調(diào)遞此時(shí),f(x)有1個(gè)極值點(diǎn),綜上,當(dāng)時(shí),f(x)有兩個(gè)極值點(diǎn),即,即a的范圍是(0,1)②由(2)可知,又由可知,可得.要證,即證,即證,即證即證令函數(shù),x(0,1),故t(x)在(0,1)上單調(diào)遞增,又所以在上恒成立,即所以.21、(1);(2)或或.【解析】(1)根據(jù)已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對的取值進(jìn)行分類討論,當(dāng)時(shí),根據(jù)三點(diǎn)共線求得,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理,結(jié)合直線交橢圓兩點(diǎn),代值計(jì)算即可求得結(jié)果.【小問1詳解】對橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問2詳解】直線與y軸交于點(diǎn)P,故可得的坐標(biāo)為,當(dāng)時(shí),則,由橢圓的對稱性可知:,故滿足題意;當(dāng)時(shí),因?yàn)槿c(diǎn)共線,若存在實(shí)數(shù),使得,即,則,故可得.又直線與橢圓交于兩點(diǎn),故聯(lián)立直線方程,與橢圓方程,可得:,則,即;設(shè)坐標(biāo)為,則,又,即,故可得:,即,也即,代入韋達(dá)定理整理得:,即,當(dāng)時(shí),上式不成立,故可得,又,則,整理得:,解得,即或.綜上所述:的取值范圍是或或.【點(diǎn)睛】本題考察橢圓方程的求解,以及橢圓中范圍問題的處理;解決本題的關(guān)鍵一是要求得的取值,二是充分利用韋達(dá)定理以及直線和曲線相交,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《誠信做人到永遠(yuǎn)》課件
- 2024-2025學(xué)年福建省福州市福清市高二上學(xué)期期中考試物理試題(解析版)
- 單位管理制度集合大合集【員工管理】十篇
- 單位管理制度集粹匯編【人員管理篇】十篇
- 單位管理制度匯編大合集【人員管理】十篇
- 單位管理制度合并匯編員工管理篇
- 《網(wǎng)吧消防安全授》課件
- 單位管理制度范文大合集人力資源管理
- 單位管理制度呈現(xiàn)匯編人力資源管理篇十篇
- 60個(gè)常考的經(jīng)濟(jì)學(xué)原理和定律
- 燃?xì)獍l(fā)電工程監(jiān)理導(dǎo)則
- GB 16844-1997普通照明用自鎮(zhèn)流燈的安全要求
- DB11-T 493.3-2022道路交通管理設(shè)施設(shè)置規(guī)范 第3部分:道路交通信號燈
- 供熱企業(yè)安全風(fēng)險(xiǎn)隱患辨識清單
- 矩形沉井計(jì)算表格(自動版)
- 滬教牛津版五年級下冊英語全冊課件
- 湘藝版 四年級上冊音樂教案- 第十課 我心愛的小馬車
- 前置胎盤的手術(shù)配合課件
- 魚骨圖模板1PPT課件
- 中國動畫之經(jīng)典賞析PPT課件
- 施工現(xiàn)場節(jié)電方法
評論
0/150
提交評論