重慶市第一中2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
重慶市第一中2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
重慶市第一中2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
重慶市第一中2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
重慶市第一中2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市第一中2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是定義在實數(shù)集上的函數(shù),且,若當(dāng)時,,則有()A. B.C. D.2.已知函數(shù)的定義域為[1,10],則的定義域為()A. B.C. D.3.已知,則函數(shù)與函數(shù)的圖象可能是()A. B.C. D.4.已知函數(shù),把函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,若是在內(nèi)的兩根,則的值為()A. B.C. D.5.下列圖象是函數(shù)圖象的是A. B.C. D.6.英國物理學(xué)家和數(shù)學(xué)家牛頓提出了物體在常溫環(huán)境下溫度變化的冷卻模型,設(shè)物體的初始溫度為,環(huán)境溫度為,其中,經(jīng)過后物體溫度滿足(其中k為正常數(shù),與物體和空氣的接觸狀況有關(guān)).現(xiàn)有一個的物體,放在的空氣中冷卻,后物體的溫度是,則()(參考數(shù)據(jù):)A.1.17 B.0.85C.0.65 D.0.237.已知集合,則A. B.C.( D.)8.下列等式中,正確的是()A. B.C. D.9.設(shè)全集,集合,則()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}10.已知冪函數(shù)是偶函數(shù),則函數(shù)恒過定點A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義在上且以3為周期的奇函數(shù),當(dāng)時,,則時,__________,函數(shù)在區(qū)間上的零點個數(shù)為__________12.如圖,在長方體ABCD—中,AB=3cm,AD=2cm,,則三棱錐的體積___________.13.已知函數(shù),則____14.已知函數(shù),則的值是________15.過點且與直線垂直的直線方程為___________.16.函數(shù)的最小值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若函數(shù)在是增函數(shù),求的取值范圍;(2)若對于任意的,恒成立,求的取值范圍.18.牛奶保鮮時間因儲藏溫度的不同而不同,假定保鮮時間與儲藏溫度之間的函數(shù)關(guān)系是(且),若牛奶放在0℃的冰箱中,保鮮時間是200小時,而在1℃的溫度下則是160小時,而在2℃的溫度下則是128小時.(1)寫出保鮮時間關(guān)于儲藏溫度(℃)的函數(shù)解析式;(2)利用(1)的結(jié)論,若設(shè)置儲藏溫度為3℃的情況下,某人儲藏一瓶牛奶的時間為90至100小時之間,則這瓶牛奶能否正常飲用?(說明理由)19.已知函數(shù).求:(1)的值域;(2)的零點;(3)時x的取值范圍20.在中,角A,B,C為三個內(nèi)角,已知,.(1)求的值;(2)若,D為AB的中點,求CD的長及的面積.21.已知函數(shù).(1)判斷并證明函數(shù)的奇偶性;(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由f(2-x)=f(x)可知函數(shù)f(x)的圖象關(guān)于x=1對稱,所以,,又當(dāng)x≥1時,f(x)=lnx單調(diào)遞增,所以,故選B2、B【解析】根據(jù)函數(shù)的定義域,結(jié)合要求的函數(shù)形式,列出滿足條件的定義域關(guān)系,求解即可.【詳解】由題意可知,函數(shù)的定義域為[1,10],則函數(shù)成立需要滿足,解得.故選:B.3、B【解析】條件化為,然后由的圖象確定范圍,再確定是否相符【詳解】,即.∵函數(shù)為指數(shù)函數(shù)且的定義域為,函數(shù)為對數(shù)函數(shù)且的定義域為,A中,沒有函數(shù)的定義域為,∴A錯誤;B中,由圖象知指數(shù)函數(shù)單調(diào)遞增,即,單調(diào)遞增,即,可能為1,∴B正確;C中,由圖象知指數(shù)函數(shù)單調(diào)遞減,即,單調(diào)遞增,即,不可能為1,∴C錯誤;D中,由圖象知指數(shù)函數(shù)單調(diào)遞增,即,單調(diào)遞減,即,不可能為1,∴D錯誤故選:B.【點睛】本題考查指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),確定這兩個的圖象與性質(zhì)是解題關(guān)鍵.4、A【解析】把函數(shù)圖象向右平移個單位,得到函數(shù),化簡得且周期為,因為是在內(nèi)的兩根,所以必有,根據(jù)得,令,則,,所以,故選A.5、D【解析】由題意結(jié)合函數(shù)的定義確定所給圖象是否是函數(shù)圖象即可.【詳解】由函數(shù)的定義可知,函數(shù)的每一個自變量對應(yīng)唯一的函數(shù)值,選項A,B中,當(dāng)時,一個自變量對應(yīng)兩個函數(shù)值,不合題意,選項C中,當(dāng)時,一個自變量對應(yīng)兩個函數(shù)值,不合題意,只有選項D符合題意.本題選擇D選項.【點睛】本題主要考查函數(shù)的定義及其應(yīng)用,屬于基礎(chǔ)題.6、D【解析】根據(jù)所給公式,將所給條件中的溫度相應(yīng)代入,利用對數(shù)的運算求解即可.【詳解】根據(jù)題意:的物體,放在的空氣中冷卻,后物體的溫度是,有:,所以,故,即,故選:D.7、C【解析】因為所以,故選.考點:1.集合的基本運算;2.簡單不等式的解法.8、D【解析】按照指數(shù)對數(shù)的運算性質(zhì)依次判斷4個選項即可.【詳解】對于A,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,錯誤;對于B,,錯誤;對于C,,錯誤;對于D,,正確.故選:D.9、D【解析】先求補集,再求并集.詳解】,則.故選:D10、D【解析】根據(jù)冪函數(shù)和偶函數(shù)的定義可得的值,進而可求得過的定點.【詳解】因為是冪函數(shù),所以得或,又偶函數(shù),所以,函數(shù)恒過定點.故選:.【點睛】本題主要考查的是冪函數(shù)和偶函數(shù)的定義,以及對數(shù)函數(shù)性質(zhì)的應(yīng)用,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.5【解析】(1)當(dāng)時,,∴,又函數(shù)是奇函數(shù),∴故當(dāng)時,(2)當(dāng)時,令,得,即,解得,即,又函數(shù)為奇函數(shù),故可得,且∵函數(shù)是以3為周期的函數(shù),∴,,又,∴綜上可得函數(shù)在區(qū)間上的零點為,共5個答案:,512、1【解析】根據(jù)題意,求得棱錐的底面積和高,由體積公式即可求得結(jié)果.【詳解】根據(jù)題意可得,平面,故可得,又因為,故可得.故答案為:.【點睛】本題考查三棱錐體積的求解,涉及轉(zhuǎn)換棱錐的頂點,屬基礎(chǔ)題.13、16、【解析】令,則,所以,故填.14、-1【解析】利用分段函數(shù)的解析式,代入即可求解.【詳解】解:因為,則.故答案為:-115、【解析】利用垂直關(guān)系設(shè)出直線方程,待定系數(shù)法求出,從而求出答案.【詳解】設(shè)與直線垂直的直線為,將代入方程,,解得:,則與直線垂直的直線為.故答案為:16、【解析】先根據(jù)二倍角余弦公式將函數(shù)轉(zhuǎn)化為二次函數(shù),再根據(jù)二次函數(shù)性質(zhì)求最值.【詳解】所以令,則因此當(dāng)時,取最小值,故答案為:【點睛】本題考查二倍角余弦公式以及二次函數(shù)最值,考查基本分析求解能力,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由函數(shù)可知對稱軸為,由單調(diào)性可知,即可求解;(2)整理問題為在時恒成立,設(shè),則可轉(zhuǎn)化問題為在時恒成立,討論對稱軸與的位置關(guān)系,進而求解.【小問1詳解】因為函數(shù),所以對稱軸為,因為在是增函數(shù),所以,解得【小問2詳解】因為對于任意的,恒成立,即在時恒成立,所以在時恒成立,設(shè),則對稱軸為,即在時恒成立,當(dāng),即時,,解得;當(dāng),即時,,解得(舍去),故.18、(1)(2)可以正常飲用【解析】(1)利用題中條件,列出等式,求解即可;(2)利用(1)中結(jié)論,當(dāng)時,即可計算出保鮮時間,判斷即可【小問1詳解】由題意可知解得【小問2詳解】由(1)知溫度為3℃時保鮮的時間為:小時故可以正常飲用19、(1);(2)-1,2;(3)【解析】(1)利用配方法求二次函數(shù)值域即可;(2)由的零點即是的根,再解方程即可;(3)由“三個二次”的關(guān)系,即是函數(shù)的圖象在y軸下方,觀察圖像即可得解.【詳解】解:(1)將函數(shù)化為完全平方式,得,故函數(shù)的值域;(2)的零點即是的根,令,解方程得方程的根為-1和2,故得函數(shù)的零點-1,2;(3)由圖得即是函數(shù)圖象在y軸下方,時x的取值范圍即在兩根之間,故x的取值范圍是.【點睛】本題考查了二次函數(shù)值域的求法,重點考查了“三個二次”的關(guān)系,屬中檔題.20、(1).(2),的面積.【解析】(1)由可求出,再利用展開即可得出答案;(2)由正弦定理可得,解出,再結(jié)合(1)可得,則,從而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面積即可.【詳解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面積.【點睛】本題考查了三角函數(shù)的和差公式以及正、余弦定理的應(yīng)用,考查了同角三角函數(shù)基本關(guān)系式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論