四川省綿陽市高中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁
四川省綿陽市高中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁
四川省綿陽市高中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁
四川省綿陽市高中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁
四川省綿陽市高中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省綿陽市高中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn),則的最小值為()A. B.2C. D.32.已知長(zhǎng)方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.3.若、且,則下列式子一定成立的是()A. B.C. D.4.下列命題中正確的個(gè)數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對(duì)于任意非零空間向量,,若,則A.1 B.2C.3 D.45.如圖,在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,6.在空間中,“直線與沒有公共點(diǎn)”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件7.設(shè),是雙曲線()的左、右焦點(diǎn),是坐標(biāo)原點(diǎn).過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.8.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將2至2021這2020個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為()A. B.C. D.9.已知直線和圓相交于兩點(diǎn).若,則的值為()A. B.C. D.10.已知滿約束條件,則的最大值為()A.0 B.1C.2 D.311.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動(dòng)點(diǎn)P(x,y)滿,則動(dòng)點(diǎn)P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切12.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則___________.14.雙曲線的漸近線方程為______15.某天上午只排語文、數(shù)學(xué)、體育三節(jié)課,則體育不排在第一節(jié)課的概率為_________16.已知拋物線方程為,則其焦點(diǎn)坐標(biāo)為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,以點(diǎn)為圓心的圓C與直線l相切(1)求圓C的標(biāo)方程;(2)過點(diǎn)的直線交圓C于A,B兩點(diǎn),且,求的方程18.(12分)如圖,四棱錐中,平面、底面為菱形,為的中點(diǎn).(1)證明:平面;(2)設(shè),菱形的面積為,求二面角的余弦值.19.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍20.(12分)設(shè)分別為橢圓的左右焦點(diǎn),過的直線l與橢圓C相交于A,B兩點(diǎn),直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程21.(12分)已知是公差不為0的等差數(shù)列,其前項(xiàng)和為,,且,,成等比數(shù)列.(1)求和;(2)若,數(shù)列的前項(xiàng)和為,且對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點(diǎn)A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點(diǎn)P的點(diǎn),過作于點(diǎn)N,連PF,AN,,由拋物線定義知,,于是得,即點(diǎn)P是過A作準(zhǔn)線l的垂線與拋物線C的交點(diǎn)時(shí),取最小值,所以的最小值為3.故選:D2、A【解析】建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量為,易知平面的一個(gè)法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個(gè)法向量為,則,即,令,則,易知平面的一個(gè)法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A3、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項(xiàng);構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項(xiàng).【詳解】對(duì)于AB選項(xiàng),構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因?yàn)?、且,則,即,A錯(cuò)B對(duì);對(duì)于CD選項(xiàng),構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無法確定與的大小關(guān)系,故CD都錯(cuò).故選:B.4、C【解析】根據(jù)題意、空間向量基底的概念和共線的運(yùn)算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個(gè)基底,則與共線或與其中有一個(gè)為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個(gè)向量,存在唯一的實(shí)數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對(duì)于任意非零空間向量,,若,則存在一個(gè)實(shí)數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯(cuò)誤.故選:C5、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.6、A【解析】由于在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面.故“直線與沒有公共點(diǎn)”是“直線與異面”的必要不充分條件.故選:A.7、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點(diǎn)睛:本題主要考查雙曲線的相關(guān)知識(shí),考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題8、C【解析】由題設(shè)且,應(yīng)用不等式求的范圍,即可確定項(xiàng)數(shù).【詳解】由題設(shè),且,所以,可得且.所以此數(shù)列的項(xiàng)數(shù)為.故選:C9、C【解析】求出圓心到直線的距離,再利用,化簡(jiǎn)求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.10、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標(biāo)函數(shù),即表示斜率為2,縱截距為的平行直線系,作出直線,平移直線到直線,使其過點(diǎn)A時(shí),的縱截距最小,最大,則,所以的最大值為1.故選:B11、A【解析】首先求得點(diǎn)的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡(jiǎn)為:,動(dòng)點(diǎn)的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A12、C【解析】利用兩直線平行的等價(jià)條件求得m,再結(jié)合充分必要條件進(jìn)行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗(yàn)證,當(dāng)m=-1時(shí),直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點(diǎn)睛】本題考查兩直線平行的條件,準(zhǔn)確計(jì)算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求導(dǎo)數(shù),代入可得.【詳解】因?yàn)樗?,則,故.故答案為:14、【解析】將雙曲線方程化成標(biāo)準(zhǔn)方程,得到且,利用雙曲線漸近線方程,可得結(jié)果【詳解】把雙曲線化成標(biāo)準(zhǔn)方程為,且,雙曲線的漸近線方程為,即故答案為【點(diǎn)睛】本題主要考查利用雙曲線的方程求漸近線方程,意在考查對(duì)基礎(chǔ)知識(shí)的掌握情況,屬于基礎(chǔ)題.若雙曲線方程為,則漸近線方程為;若雙曲線方程為,則漸近線方程為.15、【解析】寫出語文、數(shù)學(xué)、體育的所有可能排列,找出其中體育不排在第一節(jié)課的情況,利用概率公式計(jì)算即可.【詳解】所有可能結(jié)果如下:(語文,數(shù)學(xué),體育);(語文,體育,數(shù)學(xué));(數(shù)學(xué),語文,體育):(數(shù)學(xué),體育,語文);(體育,語文,數(shù)學(xué));(體育,數(shù)學(xué),語文),其中體育不排在第一節(jié)課的情況有四種,則體育不排在第一節(jié)課的概率16、【解析】先將拋物線的方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,即可判斷拋物線的焦點(diǎn)坐標(biāo)為,從而解得答案.【詳解】解:因?yàn)閽佄锞€方程為,即,所以,,所以拋物線的焦點(diǎn)坐標(biāo)為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)點(diǎn)到直線的距離公式求出半徑,即可得到圓C的標(biāo)方程;(2)根據(jù)弦長(zhǎng)公式可求出圓心C到直線的距離,再根據(jù)點(diǎn)到直線的距離公式結(jié)合分類討論思想即可求出【小問1詳解】設(shè)圓C的半徑為r,∵C與l相切,∴,∴圓C的標(biāo)準(zhǔn)方程為【小問2詳解】由可得圓心C到直線的距離∴當(dāng)?shù)男甭什淮嬖跁r(shí),其方程為,此時(shí)圓心到的距離為3,符合條件;當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè),圓心C到直線的距離,解得,此時(shí)的方程為,即綜上,的方程為或18、(1)證明見解析;(2).【解析】(1)連接交于點(diǎn),連接,則,利用線面平行的判定定理,即可得證;(2)根據(jù)題意,求得菱形的邊長(zhǎng),取中點(diǎn),可證,如圖建系,求得點(diǎn)坐標(biāo)及坐標(biāo),即可求得平面的法向量,根據(jù)平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點(diǎn),連接,則、E分別為、的中點(diǎn),所以,又平面平面所以平面(2)由菱形的面積為,,易得菱形邊長(zhǎng)為,取中點(diǎn),連接,因?yàn)?,所以,以點(diǎn)為原點(diǎn),以方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立如圖所示坐標(biāo)系.則所以設(shè)平面的法向量,由得,令,則所以一個(gè)法向量,因?yàn)?,,所以平面PAD,所以平面的一個(gè)法向量所以,又二面角為銳二面角,所以二面角的余弦值為【點(diǎn)睛】解題的關(guān)鍵是熟練掌握證明平行的定理,證明線面平行時(shí),常用中位線法和平行四邊形法來證明;利用空間向量求解二面角為??碱}型,步驟為建系、求點(diǎn)坐標(biāo)、求所需向量坐標(biāo)、求法向量、利用夾角公式求解,屬基礎(chǔ)題.19、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點(diǎn)法去絕對(duì)值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點(diǎn):1絕對(duì)值不等式;2恒成立問題;3轉(zhuǎn)化思想20、(1)(2)【解析】(1)求得直線的方程,利用點(diǎn)到直線的距離列方程,由此求得,進(jìn)而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡(jiǎn)寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡(jiǎn)得,設(shè),則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.21、(1),;(2).【解析】(1)求出,即得數(shù)列的和;(2)由題得,再利用分組求和求出,得到,令,判斷函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論