重慶市巴南區(qū)2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
重慶市巴南區(qū)2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
重慶市巴南區(qū)2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
重慶市巴南區(qū)2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
重慶市巴南區(qū)2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市巴南區(qū)2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓只有一個公共點,則m的值為()A. B.C. D.2.設α,β是兩個不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么3.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對立事件C.甲與丁是對立事件 D.丙與丁是互斥事件5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.6.已知函數(shù),則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.7.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或49.函數(shù)在區(qū)間上的最小值是()A. B.C. D.10.橢圓的焦點坐標為()A., B.,C., D.,11.已知函數(shù),則()A.函數(shù)在上單調遞增B.函數(shù)上有兩個零點C.函數(shù)有極大值16D.函數(shù)有最小值12.已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,則雙曲線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設直線AC,BD的斜率分別為,,則的值為___________.14.已知數(shù)列滿足:,且,記,若,則___________.(用表示)15.在△ABC中,,AB=3,,則________16.機動車駕駛考試是為了獲得機動車駕駛證的考試,采用全國統(tǒng)一的考試科目內容及合格標準,包括科目一理論考試、科目二場地駕駛技能考試、科目三道路駕駛技能考試和科目四安全文明常識考試共四項考試,考生應依次參加四項考試,前一項考試合格后才能報名參加后一項考試,考試不合格則需另行交費預約再次補考.據(jù)公安部門通報,佛山市四項考試的合格率依次為,,,,且各項考試是否通過互不影響,則一位佛山公民通過駕考四項考試至多需要補考一次的概率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.求甲、乙兩人所付滑雪費用相同的概率;18.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調性.19.(12分)已知拋物線的焦點為F,直線l過點(1)若點F到直線l的距離為,求直線l的斜率;(2)設A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值20.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.21.(12分)如圖,已知拋物線的焦點為F,拋物線C上的點到準線的最小距離為1(1)求拋物線C的方程;(2)過點F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點,l2與拋物線C交于C,D兩點,M,N分別為弦AB,CD的中點,求|MF|·|NF|的最小值22.(10分)如圖,在三棱柱中,點在底面內的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用圓心到直線的距離等于半徑列方程,化簡求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個公共點,所以直線與圓相切,所以.故選:D2、C【解析】AB.利用兩平面的位置關系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯誤;B.如果,,,那么α,β垂直,故錯誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯誤,故選:C3、A【解析】由三角函數(shù)的單調性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當時,利用正弦函數(shù)的單調性知;當時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質,意在考查基本判斷方法,屬于基礎題型.4、D【解析】根據(jù)互斥事件和對立事件的定義判斷【詳解】當?shù)谝淮稳〕?,第二次取出4時,甲丙同時發(fā)生,不互斥不對立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時發(fā)生,但可以同時不發(fā)生,不對立,當?shù)谝淮稳〕?,第二次取出3時,甲與丁同時發(fā)生,不互斥不對立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時發(fā)生,但可以同時不發(fā)生,因此是互斥不對立故選:D5、C【解析】畫出直觀圖,利用椎體體積公式進行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C6、B【解析】根據(jù)導數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B7、A【解析】根據(jù)題意,結合直線與圓的位置關系求出,即可求解.【詳解】根據(jù)題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.8、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.9、B【解析】求出導函數(shù),確定函數(shù)的單調性,得極值,并求出端點處函數(shù)值比較后可得最小值【詳解】解:因為,于是函數(shù)在上單調遞增,在上單調遞減,,,得函數(shù)在區(qū)間上的最小值是故選:B10、A【解析】由題方程化為橢圓的標準方程求出c,則橢圓的焦點坐標可求【詳解】由題得方程可化為,所以所以焦點為故選:A.11、C【解析】對求導,研究的單調性以及極值,再結合選項即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個零點,且無最小值.故選:C12、A【解析】根據(jù)雙曲線漸近線方程得a和b的關系,根據(jù)焦點在拋物線準線上得c的值,結合a、b、c關系即可求解.【詳解】∵雙曲線的一條漸近線方程是,∴,∵準線方程是,∴,∵,∴,,∴雙曲線標準方程為:.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##0.25【解析】求出點A,B坐標,設出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設直線l方程為:,,由消去y并整理得:,,解得,于是有或,設,則,有,因此,,所以的值為.故答案:14、【解析】由可得,結合已知條件,利用裂項相消求和法即可得答案.【詳解】解:因為,所以,即,所以,因為,所以,又,所以.故答案為:.15、3【解析】計算得出,可得出,再利用平面向量數(shù)量積的運算性質可求得結果.【詳解】∵,,,∴故答案為:3.16、【解析】至多需要補考一次,分5種情況分別計算后再求和即可.【詳解】不需要補考就通過的概率為;僅補考科目一就通過的概率為;僅補考科目二就通過的概率為;僅補考科目三就通過的概率為;僅補考科目三就通過的概率為,一位佛山公民通過駕考四項考試至多需要補考一次的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】甲、乙兩人所付費用相同即為、、,求出相應的概率,利用互斥事件的概率公式,可求出甲、乙兩人所付費用相同的概率;【詳解】兩人所付費用相同,相同費用可能為0,40,80元,兩人都付0元的概率為,兩人都付40元的概率為,兩人都付80元的概率為,故兩人所付費用相同的概率為.18、(1)(2)詳見解析.【解析】(1)由,求導,得到,寫出切線方程;(2)求導,再分,,討論求解.【小問1詳解】解:因為,所以,則,所以,所以曲線在點處的切線方程是,即;【小問2詳解】因為,所以,當時,成立,則在上遞減;當時,令,得,當時,,當時,,所以在上遞減,在上遞增;綜上:當時,在上遞減;當時,在上遞減,在上遞增;19、(1)(2)證明見詳解.【解析】(1)設出直線方程,根據(jù)點到直線的距離公式,即可求得直線;(2)設出直線方程,聯(lián)立拋物線方程,根據(jù)韋達定理,利用直線垂直,從而得到的斜率關系,即可證明.【詳解】(1)由條件知直線l的斜率存在,設為,則直線l的方程為:,即從而焦點到直線l的距離為,平方化簡得:,故直線斜率為:.(2)證明:設直線AB的方程為,聯(lián)立拋物線方程,消元得:設,,線段AB的中點為,故因為,將M點坐標代入后整理得:即可得:故為定值.即證.【點睛】本題考查拋物線中的定值問題,涉及直線方程的求解,韋達定理,屬綜合基礎題.20、(1)證明見解析;(2).【解析】(1)由三角形的邊角關系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點為坐標原點,,,分別為,,軸建立空間坐標系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因為底面,底面,∴.因為,底面,底面,底面,底面,所以面面.(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點為坐標原點,,,分別為,,軸建立空間坐標系,則,,,,設平面的法向量為,則,,取,設平面的法向量為,則,,取,所以,所以二面角余弦值為.【點睛】本題考查面面垂直的判定,線面垂直的性質,利用空間向量法求二面角的余弦值,屬于中檔題.21、(1)(2)8【解析】(1)由拋物線C上的點到準線的最小距離為1,所以,即可求得拋物線的方程;(2)設直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進而求得的坐標,得到的表達式,結合基本不等式,即可求解.【小問1詳解】解:因為拋物線C上的點到準線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設點A(x1,y1),B(x2,y2),則,因為M(xM,yM)為弦AB的中點,所以,由,得,所以點,同理可得,所以,=,所以,當且僅當,即時,等號成立,所以的最小值為22、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論