2025屆安徽省合肥十一中數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
2025屆安徽省合肥十一中數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
2025屆安徽省合肥十一中數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
2025屆安徽省合肥十一中數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
2025屆安徽省合肥十一中數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省合肥十一中數(shù)學(xué)高二上期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列,,,則數(shù)列的前項和為()A. B.C. D.2.在三棱錐中,平面;記直線與直線所成的角為,直線與平面所成的角為,二面角的平面角為,則()A. B.C. D.3.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.64.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.5.如圖,平行六面體中,與的交點為,設(shè),則選項中與向量相等的是()A. B.C. D.6.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形7.如圖,在三棱柱中,E,F(xiàn)分別是BC,中點,,則()A.B.C.D.8.圓與圓的位置關(guān)系是()A.相離 B.內(nèi)含C.相切 D.相交9.已知函數(shù),若對任意,都有成立,則a的取值范圍為()A. B.C. D.10.離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或11.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.12.已知集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面上給定相異兩點A,B,點P滿足,則當(dāng)且時,P點的軌跡是一個圓,我們稱這個圓為阿波羅尼斯圓.已知橢圓的離心率,A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點P滿足,若的面積的最大值為3,則面積的最小值為___________.14.設(shè)函數(shù)的導(dǎo)數(shù)為,且,則___________15.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為________16.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點,則異面直線與所成角的余弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△的面積S的最大值.18.(12分)已知拋物線上一點到拋物線焦點的距離為,點關(guān)于坐標(biāo)原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設(shè)直線與軸交點分別為,求的值;(3)若,求.19.(12分)已如空間直角標(biāo)系中,點都在平面內(nèi),求實數(shù)y的值20.(12分)已知數(shù)列是等差數(shù)列,其前項和為,且,.(1)求;(2)記數(shù)列的前項和為,求當(dāng)取得最小值時的的值.21.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間;(2)當(dāng)時,證明:存在最大值,且恒成立.22.(10分)如圖,在正四棱錐中,為底面中心,,為中點,(1)求證:平面;(2)求:(?。┲本€到平面的距離;(ⅱ)求直線與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出通項,利用裂項相消法求數(shù)列的前n項和.【詳解】因為等差數(shù)列,,,所以,所以,所以數(shù)列的前項和為故B,C,D錯誤.故選:A.2、A【解析】先得到三棱錐的每一個面都是直角三角形,然后可得與平面所成的角,二面角的平面角,在直角三角形中算出他們的余弦值,利用向量法計算直線與直線所成的角為的余弦值,然后比較大小.【詳解】令,由平面,且平面,又,,面三棱錐的每一個面都是直角三角形.與平面所成的角,二面角的平面角,由已知可得,,,又,則所以,又均為銳角,故選:A.3、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C4、A【解析】結(jié)合等差中項和等比中項分別求出和,代值運算化簡即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A5、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B6、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.7、D【解析】根據(jù)空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D8、D【解析】先由圓的方程得出兩圓的圓心坐標(biāo)和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D9、C【解析】求出函數(shù)的導(dǎo)數(shù),再對給定不等式等價變形,分離參數(shù)借助均值不等式計算作答.【詳解】對函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.10、B【解析】試題解析:當(dāng)焦點在x軸上:當(dāng)焦點在y軸上:考點:本題考查橢圓的標(biāo)準(zhǔn)方程點評:解決本題的關(guān)鍵是焦點位置不同方程不同11、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.12、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設(shè),,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)求出圓的方程,再由的面積的最大值結(jié)合離心率求出和的值,進而求出面積的最小值.【詳解】解:由題意,設(shè),,因為即兩邊平方整理得:所以圓心為,半徑因為的面積的最大值為3所以,解得:因為橢圓離心率即,所以由得:所以面積的最小值為:故答案為:.【點睛】思路點睛:本題先根據(jù)已知的比例關(guān)系求出阿波羅尼斯圓的方程,再利用已知面積和離心率求出橢圓的方程,進而求得面積的最值.14、【解析】,而,所以,,故填:.考點:導(dǎo)數(shù)15、相交【解析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關(guān)系為相交16、【解析】建立如圖所示的空間直角坐標(biāo)系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因為平面與平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標(biāo)系,則,故,,故.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進而可得C的大?。唬?)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當(dāng)且僅當(dāng)時等號成立,∴△的面積S的最大值為.18、(1);(2);(3).【解析】(1)運用拋物線的定義進行求解即可;(2)設(shè)出直線的方程,與拋物線的方程聯(lián)立,可求得點和的縱坐標(biāo),結(jié)合直線點斜式方程、兩點間距離公式進行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準(zhǔn)線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設(shè),則,,,,所以直線的方程為,聯(lián)立,消去得,,解得,設(shè),,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負(fù)),即,所以【點睛】關(guān)鍵點睛:運用拋物線的定義、弦長公式進行求解是解題的關(guān)鍵.19、【解析】方法一:根據(jù)平面向量基本定理即可解出;方法二:先求出平面的一個法向量,再根據(jù)即可求出【詳解】方法一:,由題意知A,B,C,P四點共面,則存在實數(shù),滿足∵,∴∴,而,∴方法二:,設(shè)平面的一個法向量為,則,∴取,則,∵,∴,解得20、(1)(2)10或11【解析】(1)利用通項公式以及求和公式列出方程組得出;(2)先求出數(shù)列通項公式,再根據(jù)得出取得最小值時的的值.【小問1詳解】設(shè)等差數(shù)列的公差為,則由得解得所以.【小問2詳解】因為,所以,則.令,解得,由于,故或,故當(dāng)前項和取得最小值時的值為10或11.21、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當(dāng)時,定義域R,求出,從而得出單調(diào)區(qū)間,由當(dāng)時,,當(dāng)時,,以及極值點與2的大小關(guān)系可得出當(dāng)時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當(dāng)時,定義域R因為,當(dāng)時,,當(dāng)時,,所以的最大值在時取得;由,即,得由,得,或由,得所以在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時,,且,由所以當(dāng)時,函數(shù)有最大值.所以,因為,所以,設(shè),則所以化為由,則,則,所以所以22、(1)證明見解析;(2)(i);(ii).【解析】(1)連接,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論