版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建省福清市高二數(shù)學第一學期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),是兩個不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知,,則等于()A.2 B.C. D.3.點A是曲線上任意一點,則點A到直線的最小距離為()A. B.C. D.4.如果雙曲線的一條漸近線方程為,且經(jīng)過點,則雙曲線的標準方程是()A. B.C. D.5.已知雙曲線漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.46.已知向量,,且,則的值是()A. B.C. D.7.有關(guān)橢圓敘述錯誤的是()A.長軸長等于4 B.短軸長等于4C.離心率為 D.的取值范圍是8.雙曲線的焦點坐標為()A. B.C. D.9.設(shè)m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則10.已知平面,的法向量分別為,,且,則()A. B.C. D.11.某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,同時進來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.12.已知數(shù)列中,前項和為,且點在直線上,則=A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,若,,使得,則實數(shù)a的取值范圍是______14.若函數(shù)是上的增函數(shù),則實數(shù)的取值范圍是__________.15.歐陽修在《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若你隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是_______16.已知隨機變量X服從正態(tài)分布,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的一個焦點是,且離心率.(1)求橢圓的方程;(2)設(shè)過點的直線交于兩點,線段的垂直平分線交軸于點,求的取值范圍.18.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)記,其中表示不超過最大整數(shù),如,.(i)求、、;(ii)求數(shù)列的前項的和.19.(12分)已知等差數(shù)列各項均不為零,為其前項和,點在函數(shù)的圖像上.(1)求的通項公式;(2)若數(shù)列滿足,求的前項和;(3)若數(shù)列滿足,求的前項和的最大值、最小值.20.(12分)在中,是的中點,,現(xiàn)將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.22.(10分)四棱錐,底面為矩形,面,且,點在線段上,且面.(1)求線段的長;(2)對于(1)中的,求直線與面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】,得不到,因為可能相交,只要和的交線平行即可得到;,,∴和沒有公共點,∴,即能得到;∴“”是“”的必要不充分條件.故選B考點:必要條件、充分條件與充要條件的判斷.【方法點晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎(chǔ)題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項.2、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D3、A【解析】動點在曲線,則找出曲線上某點的斜率與直線的斜率相等的點為距離最小的點,利用導數(shù)的幾何意義即可【詳解】不妨設(shè),定義域為:對求導可得:令解得:(其中舍去)當時,,則此時該點到直線的距離為最小根據(jù)點到直線的距離公式可得:解得:故選:A4、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點代入,進而求得答案.【詳解】因為雙曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.5、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.6、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.7、A【解析】根據(jù)題意求出,進而根據(jù)橢圓的性質(zhì)求得答案.【詳解】橢圓方程化為:,則,則長軸長為8,短軸長為4,離心率,x的取值范圍是.即A錯誤,B,C,D正確.故選:A.8、C【解析】把雙曲線方程化為標準形式,直接寫出焦點坐標.【詳解】,焦點在軸上,,故焦點坐標為.故選:C.9、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關(guān)系判斷,意在考查學生對這些知識的理解掌握水平.10、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D11、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著車和車,同時進來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B12、C【解析】點在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項為,公差為,,數(shù)列的前項和,,故選C考點:1、等差數(shù)列;2、數(shù)列求和二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當時,,所以在上單調(diào)遞減,所以,即,由,得,當時,,所以在上單調(diào)遞增,所以,即,因為,,使得,所以,解得,故答案為:14、【解析】由題意知在上恒成立,從而結(jié)合一元二次不等式恒成立問題,可列出關(guān)于的不等式,進而可求其取值范圍.【詳解】解:由題意知,知在上恒成立,則只需,解得.故答案為:.【點睛】本題考查了不等式恒成立問題,考查了運用導數(shù)探究函數(shù)的單調(diào)性.一般地,由增函數(shù)可得導數(shù)不小于零,由減函數(shù)可得導數(shù)不大于零.對于一元二次不等式在上恒成立問題,如若在上恒成立,可得;若在上恒成立,可得.15、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計算公式進行求解即可.【詳解】因為銅錢的面積為,正方形孔的面積為,所以隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是.故答案為:【點睛】本題考查了幾何概型計算公式,考查了數(shù)學運算能力,屬于基礎(chǔ)題.16、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由條件可得,,然后可得答案;(2)設(shè)直線的方程為,,聯(lián)立直線與橢圓的方程消元,然后算出中點的坐標,然后可得線段的垂直平分線方程,然后可得,然后可求出答案.【小問1詳解】因為橢圓的一個焦點是,且離心率所以,,所以所以橢圓的方程為【小問2詳解】顯然直線的斜率不為0,設(shè)直線的方程為,聯(lián)立可得,所以所以中點的縱坐標為,橫坐標為所以線段的垂直平分線方程為令,可得當時,當時,,因為,所以綜上:18、(1);(2)(i),,;(ii).【解析】(1)推導出數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,即可求得數(shù)列的通項公式;(2)(i)利用對數(shù)函數(shù)的單調(diào)性結(jié)合題中定義可求得、、的值;(ii)分別解不等式、、,結(jié)合題中定義可求得數(shù)列的前項的和.【小問1詳解】解:因為,,則,可得,,可得,以此類推可知,對任意的,.由,變形為,是一個以為公差的等差數(shù)列,且首項為,所以,,因此,.【小問2詳解】解:(i),則,,則,故,,則,故;(ii),當時,即當時,,當時,即當時,,當時,即當時,,因此,數(shù)列的前項的和為.19、(1)(2)(3)最大值為,最小值為【解析】(1)將點代入函數(shù)解析再結(jié)合前和即可求解;(2)運用錯位相減法或分組求和法都可以求解;(3)將數(shù)列的通項變形為,再求和,通過分類討論從單調(diào)性上分析求解即可.【小問1詳解】因為點在函數(shù)的圖像上,所以,又數(shù)列是等差數(shù)列,所以,即所以,;【小問2詳解】解法1:,==,解法2:,①,②①-②得,;【小問3詳解】記的前n項和為,則=,當n為奇數(shù)時隨著n的增大而減小,可得,當n為偶數(shù)時隨著n增大而增大,可得,所以的最大值為,最小值為.20、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質(zhì)得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因為點是的中點,在中,由(1)易知,.過點作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.21、(1);(2).【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版住宅小區(qū)消防水源及供水系統(tǒng)改造合同范本3篇
- 2024版汽車銷售合同:汽車銷售公司向客戶銷售汽車及相關(guān)權(quán)益規(guī)定
- 2025年度純凈水瓶裝水環(huán)保材料研發(fā)與應用合同4篇
- 二零二五年裝配式建筑技術(shù)工程師聘用合同范本大全3篇
- 2025年度交通事故現(xiàn)場勘查及鑒定服務(wù)合同4篇
- 2025年度新能源汽車補貼借款合同樣本4篇
- 二零二四年企業(yè)信息化規(guī)劃與實施合同3篇
- 2025彩鋼瓦材料采購合同書(含環(huán)保檢測)3篇
- 2025年度車間設(shè)備租賃與智能能源管理系統(tǒng)合同4篇
- 個人經(jīng)營性借款合同(2024年版)
- 2025-2030年中國陶瓷電容器行業(yè)運營狀況與發(fā)展前景分析報告
- 二零二五年倉儲配送中心物業(yè)管理與優(yōu)化升級合同3篇
- 2025屆廈門高三1月質(zhì)檢期末聯(lián)考數(shù)學答案
- 音樂作品錄制許可
- 拉薩市2025屆高三第一次聯(lián)考(一模)英語試卷(含答案解析)
- 開題報告:AIGC背景下大學英語教學設(shè)計重構(gòu)研究
- 師德標兵先進事跡材料師德標兵個人主要事跡
- 連鎖商務(wù)酒店述職報告
- 《實踐論》(原文)毛澤東
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報告
- 初中數(shù)學校本教材(完整版)
評論
0/150
提交評論