版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市江津區(qū)達標名校2024屆中考數(shù)學模擬精編試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為()A. B. C. D.2.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件3.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣14.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和5.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形6.如圖,一次函數(shù)和反比例函數(shù)的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或7.計算的結果是()A.1 B.-1 C. D.8.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角9.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.10.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-6二、填空題(共7小題,每小題3分,滿分21分)11.某菜農搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農身高為1.8m,他在不彎腰的情況下,在棚內的橫向活動范圍是__m.12.八位女生的體重(單位:kg)分別為36、42、38、40、42、35、45、38,則這八位女生的體重的中位數(shù)為_____kg.13.函數(shù)y=中自變量x的取值范圍是___________.14.若關于x的方程x2+x﹣a+=0有兩個不相等的實數(shù)根,則滿足條件的最小整數(shù)a的值是()A.﹣1 B.0 C.1 D.215.數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經》九題古證.(以上材料來源于《古證復原的原則》《吳文俊與中國數(shù)學》和《古代世界數(shù)學泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.16.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.17.若分式x-1三、解答題(共7小題,滿分69分)18.(10分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉90°得到線段MD,連接CD,BD.設點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標與直線l的表達式;(2)①直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.19.(5分)先化簡,再求值:,其中20.(8分)先化簡,再求值:(﹣)÷,其中x的值從不等式組的整數(shù)解中選?。?1.(10分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;經過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.22.(10分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.23.(12分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.
24.(14分)如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉60°后得到CE,連接AE.求證:AE∥BC.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)等腰直角三角形的性質可得出2S2=S1,根據(jù)數(shù)的變化找出變化規(guī)律“Sn=()n﹣2”,依此規(guī)律即可得出結論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規(guī)律“Sn=()n﹣2”.2、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.3、A【解析】
根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關鍵是熟記數(shù)的0次冪為1.4、A【解析】
根據(jù)乘方的法則進行計算,然后根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯誤;C.=-8,=-8,故和不是互為相反數(shù),故錯誤;D.=8,=8故和不是互為相反數(shù),故錯誤.故選A.【點睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關鍵是掌握有理數(shù)乘方的運算法則.5、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關鍵是能夠了解矩形和菱形的判定定理,難度不大.6、B【解析】
根據(jù)圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數(shù)圖象可發(fā)現(xiàn):或時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,函數(shù)與不等式,利用數(shù)形結合思想是解題的關鍵.7、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.8、B【解析】
利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【點睛】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.9、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.10、B【解析】
先根據(jù)多項式乘以多項式的法則,將(x-2)(x+3)展開,再根據(jù)兩個多項式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故選:B.【點睛】本題主要考查多項式乘以多項式的法則及兩個多項式相等的條件.多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.兩個多項式相等時,它們同類項的系數(shù)對應相等.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.12、1【解析】
根據(jù)中位數(shù)的定義,結合圖表信息解答即可.【詳解】將這八位女生的體重重新排列為:35、36、38、38、40、42、42、45,則這八位女生的體重的中位數(shù)為=1kg,故答案為1.【點睛】本題考查了中位數(shù),確定中位數(shù)的時候一定要先排好順序,然后再根據(jù)個數(shù)是奇數(shù)或偶數(shù)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù),中位數(shù)有時不一定是這組數(shù)據(jù)的數(shù).13、x≥﹣且x≠1【解析】
試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.14、D【解析】
根據(jù)根的判別式得到關于a的方程,求解后可得到答案.【詳解】關于x的方程有兩個不相等的實數(shù)根,則解得:滿足條件的最小整數(shù)的值為2.故選D.【點睛】本題考查了一元二次方程根與系數(shù)的關系,理解并能運用根的判別式得出方程是解題關鍵.15、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質:矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質,解題的關鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質,屬于中考??碱}型.16、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質,最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.17、1【解析】試題分析:根據(jù)題意,得|x|-1=0,且x-1≠0,解得x=-1.考點:分式的值為零的條件.三、解答題(共7小題,滿分69分)18、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】
(1)當y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達式;(2)分當點M在AO上運動時,當點M在OB上運動時,進行討論可求D點坐標,將D點坐標代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當點M在AO上運動時,即0<t<3時,當點M在OB上運動時,即3≤t≤4時,進行討論可求P點坐標.【詳解】(1)當y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側,∴A(﹣3,0),B(1,0),由解析式得C(0,),設直線l的表達式為y=kx+b,將B,C兩點坐標代入得b=mk﹣,故直線l的表達式為y=﹣x+;(2)當點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M在AB上運動,∴當CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最??;(3)當點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質,等邊三角形的性質,三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強,有一定的難度.19、;.【解析】
先對小括號部分通分,同時把除化為乘,再根據(jù)分式的基本性質約分,最后代入求值.【詳解】解:原式==把代入得:原式=.【點睛】本題考查分式的化簡求值,計算題是中考必考題,一般難度不大,要特別慎重,盡量不在計算上失分.20、-【解析】
先化簡,再解不等式組確定x的值,最后代入求值即可.【詳解】(﹣)÷,=÷=解不等式組,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1時,分式無意義,∴x=2,∴原式==﹣.21、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調運方案總運費最??;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小,其調運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據(jù)題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.22、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解析】
(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出的取值;
(2)根據(jù)根與系數(shù)的關系得到x1+x2=3,,根據(jù)方程的兩個根都是整數(shù)可得m=1或.結合(1)的結論可知m1.解方程即可.【詳解】解:(1)∵關于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物流企業(yè)車輛掛靠業(yè)務及運營管理合同3篇
- 2024年北師大版選擇性必修2歷史上冊階段測試試卷
- 2024-2025學年江蘇省南通市海門市三上數(shù)學期末統(tǒng)考模擬試題含解析
- 2024年數(shù)據(jù)中心數(shù)據(jù)備份與恢復服務合同3篇
- 商業(yè)廣告與小學生閱讀理解能力的提升
- 2024年度行政協(xié)議人力資源配置合同2篇
- 從初創(chuàng)到成熟創(chuàng)新型企業(yè)報告設計
- 2024年物聯(lián)網(wǎng)智能手表研發(fā)與銷售合同
- 培養(yǎng)未來領袖科技教育在小學的應用與影響
- 醫(yī)療視角下的學生早餐營養(yǎng)建議
- 貴州大學新型智庫建設實施方案
- 熱工設備安全操作和維護
- 當代世界經濟與政治學習通超星期末考試答案章節(jié)答案2024年
- 2024年中國人保行測筆試題庫
- 初++中數(shù)學設計學校田徑運動會比賽場地+課件++人教版七年級數(shù)學上冊
- 2024年秋八年級英語上冊 Unit 7 Will people have robots教案 (新版)人教新目標版
- 2《永遇樂京口北固亭懷古》同步練習(含答案)統(tǒng)編版高中語文必修上冊-3
- 微積分試卷及規(guī)范標準答案6套
- 藍色國家科學基金16.9杰青優(yōu)青人才科學基金答辯模板
- 自來水的供水環(huán)保與生態(tài)協(xié)調
- 羽毛球館運營管理指南
評論
0/150
提交評論