版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省淄博市淄川中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A B.C. D.2.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=13.閱讀如圖所示程序框圖,運行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.324.已知A,B,C三點不共線,O是平面ABC外一點,下列條件中能確定點M與點A,B,C一定共面的是A. B.C. D.5.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件6.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.7.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.8.已知是橢圓的左焦點,為橢圓上任意一點,點坐標(biāo)為,則的最大值為()A. B.13C.3 D.59.已知,則下列不等式一定成立的是()A. B.C. D.10.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.11.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.12.已知函數(shù)滿足對于恒成立,設(shè)則下列不等關(guān)系正確是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖的形狀出現(xiàn)存南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最一上層有1個球,第二層有3個球,第三層有6個球……,設(shè)從上至下各層球數(shù)構(gòu)成一個數(shù)列則___________.(填數(shù)字)14.已知在△中,角A,B,C的對邊分別是a,b,c,若△的面積為2,邊上中線的長為.且,則△外接圓的面積為___________15.若,,,四點中恰有三點在橢圓上,則橢圓C的方程為________.16.已知函數(shù),則曲線在點處的切線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同兩點E,F(xiàn),點O為坐標(biāo)原點,且,當(dāng)?shù)拿娣e取最大值時,求的取值范圍18.(12分)已知一張紙上畫有半徑為4的圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當(dāng)取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標(biāo)準(zhǔn)方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.19.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值20.(12分)如圖,在棱長為的正方體中,為中點(1)求二面角的大??;(2)探究線段上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由21.(12分)如圖,矩形的兩個頂點位于x軸上,另兩個頂點位于拋物線在x軸上方的曲線上,求矩形面積最大時的邊長.22.(10分)在平面直角坐標(biāo)系中,圓外的點在軸的右側(cè)運動,且到圓上的點的最小距離等于它到軸的距離,記的軌跡為(1)求的方程;(2)過點的直線交于,兩點,以為直徑的圓與平行于軸的直線相切于點,線段交于點,證明:是的中點
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A2、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點:雙曲線的標(biāo)準(zhǔn)方程及簡單的幾何性質(zhì)3、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C4、D【解析】首先利用坐標(biāo)法,排除錯誤選項,然后對符合的選項驗證存在使得,由此得出正確選項.【詳解】不妨設(shè).對于A選項,,由于的豎坐標(biāo),故不在平面上,故A選項錯誤.對于B選項,,由于的豎坐標(biāo),故不在平面上,故B選項錯誤.對于C選項,,由于的豎坐標(biāo),故不在平面上,故C選項錯誤.對于D選項,,由于的豎坐標(biāo)為,故在平面上,也即四點共面.下面證明結(jié)論一定成立:由,得,即,故存在,使得成立,也即四點共面.故選:D.【點睛】本小題主要考查空間四點共面的證明方法,考查空間向量的線性運算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.5、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時,成立,反過來,當(dāng)時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎(chǔ)題型.6、B【解析】設(shè)大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意求得,再由古典概型及其概率的公式,即可求解【詳解】設(shè)大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意可得,解得,則燈球的總數(shù)為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據(jù)題意列出方程組,求得兩種燈球的數(shù)量是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題7、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗滿足題意故選:C8、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B9、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B10、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.11、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D12、A【解析】由條件可得函數(shù)為上的增函數(shù),構(gòu)造函數(shù),利用函數(shù)單調(diào)性比較的大小,再根據(jù)函數(shù)的單調(diào)性確定各選項的對錯.【詳解】設(shè),則,∵,∴,∴函數(shù)在上為增函數(shù),∵,∴,故,所以,C錯,令(),則,當(dāng)時,,當(dāng)時,∴函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,∴,∴,即,∴,故,所以,D錯,,故,所以,A對,,故,所以,B錯,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到,即可得解【詳解】解:由題意可知,,,,,,故,所以,故答案為:14、或【解析】由已知,結(jié)合正弦定理邊角關(guān)系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長b、c,應(yīng)用余弦定理求邊長a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設(shè)及正弦定理邊角關(guān)系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或15、【解析】由于,關(guān)于軸對稱,故由題設(shè)知C經(jīng)過,兩點,C不經(jīng)過點,然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關(guān)于軸對稱,故由題設(shè)知經(jīng)過,兩點,所以.又由知,不經(jīng)過點,所以點在上,所以.因此,故方程為.故答案為:.【點睛】求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出,;若焦點位置不明確,則需要分焦點在軸上和軸上兩種情況討論,也可設(shè)橢圓的方程為16、【解析】先求出,求出導(dǎo)函數(shù)及,進而求出切線方程.【詳解】∵,∴,又,∴在處的切線方程為,即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)點,根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標(biāo)表示,得到,根據(jù)其最小值,求出,即可得出橢圓方程;(2)設(shè),,,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理,由弦長公式,以及點到直線距離公式,求出的面積的最值,得到;得出點的軌跡為橢圓,且點為橢圓的左、右焦點,記,則,得到,根據(jù)對勾函數(shù)求出最值.【小問1詳解】設(shè)點,由題意知,所以:,則,當(dāng)時,取得最大值,即,故橢圓C的標(biāo)準(zhǔn)方程是【小問2詳解】設(shè),,,則由得,,點O到直線l的距離,對用均值不等式,則:當(dāng)且僅當(dāng)即,①,S取得最大值.此時,,,即,代入①式整理得,即點M的軌跡為橢圓且點,為橢圓的左、右焦點,即記,則于是:,由對勾函數(shù)的性質(zhì):當(dāng)時,,且,故的取值范圍為18、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)立,用韋達(dá)定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點G坐標(biāo)原點,OA所在直線為x軸建立平面直角坐標(biāo)系,如圖:∴可知,,設(shè)折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O(shè),A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設(shè),,則的周長為當(dāng)軸時,l的方程為,,,當(dāng)l與x軸不垂直時,設(shè),由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是19、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,分別寫出,,的坐標(biāo),證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標(biāo)原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標(biāo)系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為20、(1)(2)點為線段上靠近點的三等分點【解析】(1)建立空間直角坐標(biāo)系,分別寫出點的坐標(biāo),求出兩個平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計算即可.【小問1詳解】如下圖所示,以為原點,,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因為,,,平面,平面,平面,所以平面,所以為平面的一個法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設(shè)在線段上存在點,使得平面,設(shè),,,因為平面,所以,即所以,即解得所以在線段上存在點,使得平面,此時點為線段上靠近點的三等分點21、當(dāng)矩形面積最大時,矩形邊AB長,BC長【解析】先設(shè)出點坐標(biāo),進而表示出矩形的面積,通過求導(dǎo)可求出其最大面積.【詳解】設(shè)點,那么矩形面積,.令解得(負(fù)舍).所以S在(0,)上單調(diào)遞增,在(,2)上單調(diào)遞;..所以當(dāng)時,S有最大值.此時答:當(dāng)矩形面積最大時,矩形邊AB長,BC長.22、(1)(2)證明見解析【解析】(1)設(shè)點,求得到圓上的最小距離為,根據(jù)題意得到,整理即可求得曲線的方程;(2)當(dāng)直線的斜率不存在時,顯然成立;當(dāng)直線的斜率存在時,設(shè)直線的方程,聯(lián)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航運行業(yè)保安工作總結(jié)
- 北京市安全管理工作總結(jié)
- 銀行工作總結(jié)團結(jié)合作追求卓越
- 2023-2024學(xué)年北京市101中學(xué)高一(下)期中語文試卷
- 家具行業(yè)招聘成功案例
- 娛樂設(shè)施行業(yè)推廣計劃總結(jié)
- 醫(yī)療話務(wù)員工作總結(jié)
- 醫(yī)學(xué)美容診所前臺工作總結(jié)
- 2024年認(rèn)識安全標(biāo)志的教案
- 涼亭制定安裝協(xié)議書(2篇)
- GB/T 12574-2023噴氣燃料總酸值測定法
- 2022年天津三源電力集團限公司社會招聘33人上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- 2023-2024學(xué)年廣東廣州番禺區(qū)四年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含答案
- 抑郁病診斷證明書
- 對話大國工匠-致敬勞動模范期末考試答案
- 財務(wù)總監(jiān)績效考核表
- 壓縮語段之語段要點概括公開課一等獎市優(yōu)質(zhì)課賽課獲獎?wù)n件
- 數(shù)字孿生水利工程建設(shè)技術(shù)導(dǎo)則(試行)
- 砌筑工程安全監(jiān)理制度
- 工商企業(yè)管理畢業(yè)論文 工商企業(yè)管理5000論文范文四篇
- 職業(yè)病危害風(fēng)險管理
評論
0/150
提交評論