




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市西城區(qū)徐悲鴻中學數(shù)學高三上期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.2.很多關于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學家和數(shù)學愛好者,有些猜想已經(jīng)被數(shù)學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.3.已知復數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.4.函數(shù)的圖象大致為()A. B.C. D.5.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.點為的三條中線的交點,且,,則的值為()A. B. C. D.7.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.8.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.9.函數(shù)的部分圖象大致為()A. B.C. D.10.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.11.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.12.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.14.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.15.的展開式中常數(shù)項是___________.16.若函數(shù)為偶函數(shù),則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知a,b∈R,設函數(shù)f(x)=(I)若b=0,求f(x)的單調區(qū)間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:18.(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.19.(12分)某社區(qū)服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數(shù)學期望的取值范圍?20.(12分)已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項和.21.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.2、B【解析】
根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.3、D【解析】
根據(jù)復數(shù)z滿足,利用復數(shù)的除法求得,再根據(jù)復數(shù)的概念求解.【詳解】因為復數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.4、A【解析】
根據(jù)函數(shù)的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導數(shù)研究函數(shù)的單調區(qū)間和極值,屬于中檔題.5、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.6、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.7、D【解析】
集合.為自然數(shù)集,由此能求出結果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.8、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應選.9、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!驹斀狻浚势婧瘮?shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。10、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.11、C【解析】
先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉化思想和運算能力,屬于難題.12、C【解析】
設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題得直線的方程為,代入橢圓方程得:,設點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關系,三角形面積計算與離心率的求解,考查了學生的運算求解能力14、【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數(shù)有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數(shù)與概率的基本運用,熟悉組合數(shù)公式15、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.16、【解析】
二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)詳見解析;(II)2【解析】
(I)求導得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當a≤0時,f'(x)=e當a>0時,f'(x)=ex-a=0,x=lna當x∈lna,+∞時,綜上所述:a≤0時,fx在R上單調遞增;a>0時,fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當x∈0,+∞上時,x2+1f'x在x∈0,+∞上單調遞增,故fx在0,12上單調遞減,在1綜上所述:a+5b的最大值為【點睛】本題考查了函數(shù)單調性,函數(shù)的最值問題,意在考查學生的計算能力和綜合應用能力.18、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián);(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián).(3)年齡在的被調查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.19、(1)見解析;(2)【解析】
(1)X的可能取值為300,500,600,結合題意及表格數(shù)據(jù)計算對應概率,即得解;(2)由題意得,分,及,分別得到y(tǒng)與n的函數(shù)關系式,得到對應的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600故:六月份這種酸奶一天的需求量(單位:瓶)的分布列為300500600(2)由題意得.1°.當時,利潤此時利潤的分布列為.2.時,利潤此時利潤的分布列為.綜上的數(shù)學期望的取值范圍是.【點睛】本題考查了函數(shù)與概率統(tǒng)計綜合,考查了學生綜合分析,數(shù)據(jù)處理,轉化劃歸,數(shù)學運算的能力,屬于中檔題.20、(I);(Ⅱ)【解析】
(Ⅰ)設等差數(shù)列的公差為,則依題設.由,可得.由,得,可得.所以.可得.(Ⅱ)設,則.即,可得,且.所以,可知.所以,所以數(shù)列是首項為4,公比為2的等比數(shù)列.所以前項和.考點:等差數(shù)列通項公式、用數(shù)列前項和求數(shù)列通項公式.21、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務分包合同實例
- 專業(yè)體育用品零售連鎖店采購合同
- 《醫(yī)療質量管理體系》課件
- 五方股權轉讓合同
- 日文離婚協(xié)議書
- 轉租廣告位合同協(xié)議
- 死亡享保協(xié)議書
- 車輛座套廣告合同協(xié)議
- 超市租賃裝修合同協(xié)議
- 旱廁承包協(xié)議書
- 第五講鑄牢中華民族共同體意識-2024年形勢與政策
- 2017年特高壓互聯(lián)電網(wǎng)穩(wěn)定及無功電壓調度運行
- 執(zhí)法辦案和執(zhí)法監(jiān)督注意事項課件
- 商品流通企業(yè)會計實務習題和參考答案與解析
- 客運駕駛人從業(yè)行為定期考核制度
- 【課件】高二下學期期中考試成績分析家長會課件
- 2022年同等學力人員申請碩士學位日語水平統(tǒng)一考試真題
- 游泳池設備操作培訓課件
- 城軌道交通人因事故分析及評價研究
- (完整版)羊水栓塞應急預案演練記錄
- ZYWL-4000型履帶式鉆機
評論
0/150
提交評論