




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆陜西省渭南三賢中學數學高三第一學期期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為自然對數的底數,函數,若,則()A. B. C. D.2.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件3.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.4.復數滿足,則復數在復平面內所對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2826.設,滿足,則的取值范圍是()A. B. C. D.7.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.9.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.10.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大11.是虛數單位,則()A.1 B.2 C. D.12.網絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點.若(點為坐標原點)的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.14.已知點M是曲線y=2lnx+x2﹣3x上一動點,當曲線在M處的切線斜率取得最小值時,該切線的方程為_______.15.已知復數,其中為虛數單位,則的模為_______________.16.已知,滿足不等式組,則的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.18.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.19.(12分)已知函數,(1)若,求的單調區(qū)間和極值;(2)設,且有兩個極值點,,若,求的最小值.20.(12分)已知奇函數的定義域為,且當時,.(1)求函數的解析式;(2)記函數,若函數有3個零點,求實數的取值范圍.21.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.22.(10分)已知函數(其中是自然對數的底數)(1)若在R上單調遞增,求正數a的取值范圍;(2)若f(x)在處導數相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.2、C【解析】
利用數量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數量積的應用,考查推理能力與計算能力,屬于基礎題.3、A【解析】
求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質的應用.4、B【解析】
設,則,可得,即可得到,進而找到對應的點所在象限.【詳解】設,則,,,所以復數在復平面內所對應的點為,在第二象限.故選:B【點睛】本題考查復數在復平面內對應的點所在象限,考查復數的模,考查運算能力.5、B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題6、C【解析】
首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數的取值范圍的問題,屬于基礎題.7、B【解析】
化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.8、D【解析】
利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.9、B【解析】
根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.10、C【解析】
,,判斷其在內的單調性即可.【詳解】解:根據題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.11、C【解析】
由復數除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數的除法和模,屬于基礎題.12、C【解析】
根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
用表示出的面積,求得等量關系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.【點睛】本題考查雙曲線的方程與性質,考查運算求解能力以及函數與方程思想,屬中檔題.14、【解析】
先求導數可得切線斜率,利用基本不等式可得切點橫坐標,從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點睛】本題主要考查導數的幾何意義,切點處的導數值等于切線的斜率是求解的關鍵,側重考查數學運算的核心素養(yǎng).15、【解析】
利用復數模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數模的求法,屬于基礎題.16、【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),以為圓心,為半徑的圓;(2)【解析】
(1)根據極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯(lián)立直線參數方程與的直角坐標方程,根據直線參數方程中的幾何意義結合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設點,所對應的參數分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據直線參數方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數方程中的幾何意義,要注意將直線的標準參數方程代入到對應曲線的直角坐標方程中,構成關于的一元二次方程并結合韋達定理形式進行分析求解.18、(1),(2)最大值,最小值【解析】
(1)由曲線的參數方程,得兩式平方相加求解,根據直線的極坐標方程,展開有,再根據求解.(2)因為曲線C是一個半圓,利用數形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.19、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】
(1)求出f(x)的導數,解不等式,即可得到函數的單調區(qū)間,進而得到函數的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導,得到,結合,當得到:增區(qū)間為,當,得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導得到,令,得到,,,,,,,,因為,所以設,令,則所以在單調遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數的單調性、極值、最值問題,考查導數的應用以及函數的極值的意義,考查轉化思想與減元意識,是一道綜合題.20、(1);(2)【解析】
(1)根據奇函數定義,可知;令則,結合奇函數定義即可求得時的解析式,進而得函數的解析式;(2)根據零點定義,可得,由函數圖像分析可知曲線與直線在第三象限必1個交點,因而需在第一象限有2個交點,將與聯(lián)立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因為函數為奇函數,且,故;當時,,,則;故.(2)令,解得,畫出函數關系如下圖所示,要使曲線與直線有3個交點,則2個交點在第一象限,1個交點在第三象限,聯(lián)立,化簡可得,令,即,解得,所以實數的取值范圍為.【點睛】本題考查了根據函數奇偶性求解析式,分段函數圖像畫法,由函數零點個數求參數的取值范圍應用,數形結合的應用,屬于中檔題.21、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】
(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設為,聯(lián)立方程得到,計算,同理,根據得到,得到證明.(Ⅲ)設中點為,根據點差法得到,同理,故,得到結論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設為,則,故,設,,故,,同理可得,,故,即,,故.(Ⅲ)設中點為,則,,相減得到,即,同理可得:的中點,滿足,故,故四邊形不能為矩形.【點睛】本題考查了橢圓內四邊形的面積,形狀,根據四邊形形狀求參數,意在考查學生的計算能力和綜合應用能力.22、(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據的單調性,構造新函數,并令,根據的單調性即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025鋼材購銷合同
- 農場雇工勞務合同范例
- 代賬合同范例
- 2025汽車租賃合同范本簡易版
- 農民樓房出售合同范例
- 2025年廣告設計與傳播策略考試試卷及答案
- 企業(yè)品牌策劃合同范例
- 2025年信息技術與服務管理考試試題及答案
- 產業(yè)養(yǎng)殖合同范例
- 2025勞務派遣人員勞動合同書
- 公司工作交接清單表格
- 環(huán)境保護和水土保持保證體系框圖
- 季節(jié)性防雷防汛防臺風安全檢查表
- 歸檔文件目錄
- 2022年四川省綿陽市中考英語試題及參考答案
- 防疫小組人員名單
- 眼部健康檢測與分析課件
- 偏心塊振動式土壤夯實機的結構設計說明
- 蘇州市建設工程造價計價解釋
- 主題班會《堅定信念--放飛理想》
- S771(一) 水力循環(huán)澄清池
評論
0/150
提交評論