集成光電子器件及設(shè)計(jì) - 現(xiàn)狀背景、基礎(chǔ)理論、器件原理_第1頁
集成光電子器件及設(shè)計(jì) - 現(xiàn)狀背景、基礎(chǔ)理論、器件原理_第2頁
集成光電子器件及設(shè)計(jì) - 現(xiàn)狀背景、基礎(chǔ)理論、器件原理_第3頁
集成光電子器件及設(shè)計(jì) - 現(xiàn)狀背景、基礎(chǔ)理論、器件原理_第4頁
集成光電子器件及設(shè)計(jì) - 現(xiàn)狀背景、基礎(chǔ)理論、器件原理_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江大學(xué)光電信息系集成光電子器件及設(shè)計(jì)浙江大學(xué)光電信息系2提綱1.

課程組介紹;2.

課程簡(jiǎn)介;3.

集成光電子學(xué)導(dǎo)論;浙江大學(xué)光電信息系31.

課程組介紹浙江大學(xué)光電信息系9Silicon

nanophotonic

integrated

devicesSpiral

lineArrayed

waveguide

grating

Human’s

hair

42μm

79.9μm

Our

AWGOptical

switcher,

VOARing‐based

modulator

Y‐branchSOI

nanowire

MZI‐coupled

microring

R~2

μm

2

μmSiN

waveguide

加熱電極TMTESiO2SiTE/TMw1hcowgw2SiO2SiSiTM/TE

TM

TED.

Dai,

and

et

al,

Opt.

Express,

19:

18614

(2011).

Fei

Lou,

et

al.

Opt.

Lett.

37,

3372‐3374

(2012)

10基于非對(duì)稱耦合系統(tǒng)的PBS

D.

Dai

et

al.

Laser

&

Photonics

Reviews

(2012)

Total

length:

<

10μmTESiO2SiTE/TMD.

Dai,

et

al.

Optics

Letters,

36(13),

2590‐2592

(2011).

Total

length:

~8μm

TMTotal

length:

~5μmTotal

length:

~20μm

光通信領(lǐng)域頂級(jí)會(huì)議OFC2013

Wang,

et

al.

OFC/NFOEC

2013.浙江大學(xué)光電信息系浙江大學(xué)光電信息系12辦公室地址:紫金港東五樓

光及電磁波研究中心215Our

center紫金港東五樓

光及電磁波研究中心浙江大學(xué)光電信息系13

13

集成光電子實(shí)驗(yàn)室>2000m2實(shí)驗(yàn)大樓(含500m2超凈室);>4000萬元實(shí)驗(yàn)儀器設(shè)備;浙江大學(xué)光電信息系142.

課程簡(jiǎn)介浙江大學(xué)光電信息系152.1

課程概況

2學(xué)分(1.5‐1):

24學(xué)時(shí)理論

+

16學(xué)時(shí)實(shí)驗(yàn);

助教:于龍海

博士生;

夏學(xué)期共8周的課程安排;浙江大學(xué)光電信息系16教學(xué)目的與基本要求

對(duì)“集成光電子器件”的現(xiàn)狀背景、基礎(chǔ)理論、器件原理以及制

作工藝等有比較全面的了解;

對(duì)導(dǎo)波光學(xué)理論有較深的理解;

掌握代表性集成光電子器件工作原理、基本結(jié)構(gòu)、設(shè)計(jì)思路及

應(yīng)用;

結(jié)合國際上這一領(lǐng)域的最新進(jìn)展,激發(fā)學(xué)生對(duì)該領(lǐng)域相關(guān)方向

的興趣,培養(yǎng)學(xué)生分析問題的能力和思維方式。浙江大學(xué)光電信息系17主要內(nèi)容及學(xué)時(shí)分配

概述

(1學(xué)時(shí))

平面介質(zhì)光波導(dǎo)和耦合模理論(2+4學(xué)時(shí))

晶體在外場(chǎng)作用下的光學(xué)性質(zhì)(2學(xué)時(shí))

無源光子集成器件(6學(xué)時(shí))

耦合器/功分器、MZI、AWG等(2學(xué)時(shí))

電光器件、聲光器件、熱光開關(guān)/調(diào)制器、光隔離器/環(huán)形器(4學(xué)時(shí))

有源集成光電子器件與系統(tǒng)集成

(3學(xué)時(shí))

集成光電子器件的材料

(2學(xué)時(shí))

集成光電子器件的制作工藝及測(cè)試

(3學(xué)時(shí))

集成光電子器件的最新進(jìn)展

(1學(xué)時(shí))18

課程實(shí)驗(yàn)初步安排實(shí)驗(yàn)一:馬赫曾德光調(diào)制器的BPM仿真5月21日下午1:30‐3:30,5月22日下午

1:30‐3:30,3:30‐5:30實(shí)驗(yàn)二:微環(huán)諧振腔的FDTD仿真5月28日下午1:30‐3:30,5月29日下午

1:30‐3:30,3:30‐5:30

實(shí)驗(yàn)三:Y分支功分器測(cè)試實(shí)驗(yàn)

5人/組

6月4日

下午1:30‐5:30

6月5日

上午8:30‐12:30

6月5日

下午1:30‐5:30

6月6日

上午8:30‐12:30

6月6日

下午1:30‐5:30

實(shí)驗(yàn)四:光波導(dǎo)器件制作流程(Video)

浙江大學(xué)光電信息系浙江大學(xué)光電信息系191.2.3.大型課程設(shè)計(jì)作業(yè)

一種高速光調(diào)制器的研究,要求:

通過文獻(xiàn)閱讀和調(diào)研,提出一種實(shí)現(xiàn)高速光調(diào)制機(jī)理與結(jié)構(gòu);

完成該器件的優(yōu)化設(shè)計(jì)與分析;

提交論文報(bào)告。參考文獻(xiàn):

《微納光子集成》

何賽靈,戴道鋅.

科學(xué)出版社

《光波導(dǎo)模式理論》

馬春生,劉式墉

吉林大學(xué)出版社

3人/組,自由組合,組內(nèi)分工,提交答辯報(bào)告浙江大學(xué)光電信息系20教材與參考文獻(xiàn)

教材

《集成光學(xué)》唐天同、王兆宏著,科學(xué)出版社,2005年8月(第一版)

參考書

《半導(dǎo)體導(dǎo)波光學(xué)器件理論及技術(shù)》,趙策洲,國防工業(yè)出版社。

Robert

G.

Hunsperger.

Integrated

Optics:

Theory

and

Technology

(Sixth

Edition),

ISBN

978‐0‐387‐89775‐2

(Online),

Springer

Link

2009.

《光集成器件》,小林功郎著,科學(xué)出版社,2002

《集成光學(xué)》,T.

塔米爾主編,科學(xué)出版社,1982浙江大學(xué)光電信息系21要求:上課、作業(yè)、實(shí)驗(yàn)報(bào)告、考試

上課:按時(shí)到教室,認(rèn)真聽講,歡迎提問與質(zhì)疑,及時(shí)復(fù)習(xí)。

作業(yè):課堂布置,必須獨(dú)立完成,及時(shí)上交,每次作業(yè)均有分?jǐn)?shù),

計(jì)入含有一定比例的平時(shí)成績(jī)。

實(shí)驗(yàn)報(bào)告:包括相關(guān)課題的背景描述,實(shí)驗(yàn)原理,實(shí)驗(yàn)過程設(shè)計(jì),

實(shí)驗(yàn)結(jié)果,結(jié)論與結(jié)果討論等,是一份自己親身參與的研究報(bào)告。

成績(jī)按一定比例計(jì)入總成績(jī)。

考試:閉卷,多種題型,避免死記硬背,要求掌握基本物理,能夠

對(duì)知識(shí)融會(huì)貫通、靈活運(yùn)用。浙江大學(xué)光電信息系223.

集成光電子學(xué)導(dǎo)論浙江大學(xué)光電信息系23Motivation

for

integrated

photonics

Transmission

and

processing

of

signals

Laser

invented

in

1960s

stable

source

of

coherent

light;Free

space

light

transmission?

but

atmospheric

variations.

Signal

processing

various

components:

prisms,

lenses,

mirrors,

electro‐optic

modulators

and

detectors.1.

All

of

this

equipment

would

typically

occupy

a

laboratory

bench

tens

of

feet

on

a

side,

which

must

be

suspended

on

a

vibration‐proof

mount.2.

Such

a

system

is

tolerable

for

laboratory

experiments,

but

is

not

very

useful

in

practical

applications浙江大學(xué)光電信息系24Integrated

optics

/

photonics

Optical

integrated

circuits

(OIC’s)

or

Photonic

integrated

circuits

(PIC’s)

S.E.

Miller

in

1969

(/wiki/Stewart_E._Miller)The

integrated

optics

approach

to

signal

transmission

and

processing

offers

significant

advantages

in

both

performance

and

cost

when

compared

to

conventional

electrical

methods.

物美價(jià)廉浙江大學(xué)光電信息系25

Stewart

E.

MillerStewart

E.

Miller

(

09/01/1918

‐02/27/1990)

was

a

noted

American

pioneer

in

microwave

and

optical

communications.Miller

was

born

in

Milwaukee,

Wisconsin.

In

1941

he

receive

his

S.B.

and

S.M.

degrees

in

engineering

at

MIT.

He

joined

Bell

Labs

to

work

on

microwave

radar,

and

became

technical

lead

for

the

B‐29's

X‐band

(3

cm)

radar

microwave

plumbing.

After

World

War

II,

he

was

instrumental

in

AT&T's

L‐3

coaxial

cable

carrier

systems,

then

transferred

to

the

Radio

Research

Department

where

he

made

advances

in

many

millimeter‐wave

components.In

the

early

1960s,

Miller

was

the

first

to

recognize

the

potential

of

optical

communications

and

as

director

of

Guided

Wave

Research,

initiated

a

program

to

investigate

a

variety

of

periodic

lens

systems.

As

optical

fiber

was

developed

in

the

late

1960s,

he

demonstrated

its

utility,

and

also

proposed

the

combining

multiple

optical

components

on

one

semiconductor

chip.

He

became

director

of

Lightwave

Research

in

1980,

retired

in

1983,

and

then

consulted

at

Bellcore

(now

Telcordia

Technologies)

analyzing

semiconductor

lasers.Miller

held

some

80

patents

and

was

a

member

of

the

National

Academy

of

Engineering,

a

Life

Fellow

of

the

IEEE,

and

a

Fellow

of

the

American

Association

for

the

Advancement

of

Science

and

the

Optical

Society

of

America.

He

received

the

Naval

Ordnance

Development

Award

in

1945,

the

1972

IEEE

Morris

N.

LiebmannMemorial

Award,

the

1975

IEEE

W.R.G.

Baker

Prize

(with

TingyeLi

and

E.A.J.

Marcatili),

the

Franklin

Institute's

1977

Stuart

Ballantine

Medal,

and

the

1989

John

Tyndall

Award

of

the

IEEE

Lasers

and

Electro‐Optics

Societyfor

distinguished

contributions

to

fiber

optics

technology.浙江大學(xué)光電信息系26Advantages

of

Integrated

OpticsMany

channels

multiplexed

Huge

capacity27Advantages

of

Photonics

(VS

electronics)

Immunity

from

electromagnetic

interference

(EMI)

Freedom

from

electrical

short

circuits

or

ground

loops

Safety

in

combustible

environment

Security

from

monitoring

Low‐loss

transmission

Large

bandwidth

(i.e.,

multiplexing

capability)

Small

size,

light

weight

Inexpensive,

composed

of

plentiful

materials

Major

disadvantage:

Difficult

to

use

for

electrical

power

transmission浙江大學(xué)光電信息系浙江大學(xué)光電信息系28PICs

capability

of

transmitting

fiberPICs

the

ability

to

generate

and

process

them

Advantages

Increased

bandwidthExpanded

frequency

(wavelength)

division

multiplexingLow-loss

couplers,

including

bus

access

typesExpanded

multi-path

switchingSmaller

size,

weight,

lower

power

consumption

Batch

fabrication

economy

Improved

reliability

Improved

optical

alignment,

immunity

to

vibrationMajor

disadvantage

High

cost

of

developing

new

fabrication

technologyIntegrationPhotonics浙江大學(xué)光電信息系29In

1970s,

what

happened?to

bring

integrated

optics

out

of

the

laboratory

and

into

the

realm

of

practicalapplication

Three

main

factors:

A.

Low

loss

optical

fibers

and

connectors

(Demands),

B.

Reliable

CW

GaAlAs

and

GaInAsP

laser

diodes

(Sources),

C.

Photolithographic

microfabrication

techniques

capable

of

submicron

linewidths

(Feasibility)浙江大學(xué)光電信息系A(chǔ).

Low‐loss

optical

fibers高錕,生于中國上海,光纖通訊、電機(jī)工程專家,華文媒體譽(yù)之為“光纖之父”、普世譽(yù)之為“光纖通訊之父”(Father

of

Fiber

Optic

Communications),曾任香港中文大學(xué)校長(zhǎng)。2009年,與威拉德?博伊爾和喬治?埃爾伍德?史密斯共享諾貝爾物理學(xué)獎(jiǎng)。

30Kao,

C.K.,

"1012

bit/s

Optoelectronics

Technology",

IEE

Proceedings,

133(3):

230‐236,

June

1986.

浙江大學(xué)光電信息系

31K.C.

Kao’s

workKao,

K.C.

and

Hockham,

G.A.,

“Dielectric‐fibre

Surface

Waveguides

for

Optical

Frequencies”,

Proc.

IEE.

113(7):

1151‐1158,

July

1966.

Kao,

K.C.

and

Davies,

T.W.,

"Spectrophotometric

Studies

of

Ultra

Low

Loss

Optical

Glasses

I:

Single

Beam

Method",

Journal

of

Scientific

Instruments

(Journal

of

Physics

E),

Series

2,

1:

1063‐1068,

1968.

舉世公認(rèn)高錕是提出用纖維材料傳達(dá)光束訊號(hào)以建置通信的第一人。當(dāng)時(shí),大家已知道可用數(shù)字或模擬的方式傳送訊息,已有人研究:透過氣體或玻璃傳送光,期望可達(dá)到高速傳輸,但無法克服嚴(yán)重衰減的問題。1965年,高錕對(duì)各種非導(dǎo)體纖維進(jìn)行仔細(xì)的實(shí)驗(yàn)。按他分析,當(dāng)光學(xué)訊號(hào)衰減率能低于20dB/km時(shí),光纖通信便可行。他更進(jìn)一步分析了吸收、散射、彎曲等因素,推論被包覆的石英基玻璃有可能滿足衰減需求。這項(xiàng)關(guān)鍵研究結(jié)果,推動(dòng)全球光纖通訊的研發(fā)工作。1966年,高錕發(fā)表了一篇題為《光頻率介質(zhì)纖維表面波導(dǎo)》的論文,開創(chuàng)性地提出光導(dǎo)纖維在通信上應(yīng)用的基本原理,描述了長(zhǎng)程及高信息量光通信所需絕緣性纖維的結(jié)構(gòu)和材料特性。簡(jiǎn)單地說,只要解決好玻璃純度和成分等問題,就能夠利用玻璃制作光學(xué)纖維,從而高效傳輸信息。這一設(shè)想提出之后,有人稱之為匪夷所思,也有人對(duì)此大加褒揚(yáng)。但在爭(zhēng)論中,高錕的設(shè)想逐步變成現(xiàn)實(shí):利用石英玻璃制成的光纖應(yīng)用越來越廣泛,全世界掀起了一場(chǎng)光纖通信的革命。浙江大學(xué)光電信息系32衡特性等多個(gè)領(lǐng)域都作了成果都是使信號(hào)在無放大接纖,至1976年則達(dá)K.C.

Kao’s

work

高錕還開發(fā)了實(shí)現(xiàn)光纖通

訊所需的輔助性子系統(tǒng):

據(jù)Kao’s理論,Corning

公司R.

D.

Maurer等人1970年首次

在單模纖維的構(gòu)造、纖維

的強(qiáng)度和耐久性、纖維連

光器和耦合器以及擴(kuò)散均

到1

dB/km的水平,為日后光纖通訊

技術(shù)的飛速發(fā)展奠定了理論基礎(chǔ)。

大量的研究,而這些研究

80年代,光纖通信技術(shù)在發(fā)達(dá)國家得到了廣泛推廣應(yīng)用。

的條件下,以高速長(zhǎng)距離

通信的關(guān)鍵。33Low

loss

optical

fiber

connectors

PC

FC:

Ferrule

contactor

(鋼制金屬套筒)

;

PC:

Physical

contact,

RL~‐30dB;

SPC:

Super

PC,

RL~‐40dB;

UPC:

Ultra

PC,

RL~‐50dB;

APC:

Angled

PC,

RL~‐60dB;

PC:

藍(lán)色;APC:綠色;/fiber‐optic‐tutorial‐termination.aspx

浙江大學(xué)光電信息系浙江大學(xué)光電信息系34the

most

common

fiber

optic

connectors

ST

(an

AT&T

Trademark)

is

the

most

popular

connector

for

multimode

networksFC/PC

has

been

one

of

the

most

popular

singlemode

connectors

for

many

years

SC

is

a

snap‐in

connector

that

is

widely

used

in

singlemodesystems

for

it's

excellent

performance

LC

is

a

new

connector

that

uses

a

1.25

mm

ferrule,

half

the

size

of

the

STMT‐RJ

is

a

duplex

connector

with

both

fibers

in

a

single

polymer

ferrule

Opti‐Jack

is

a

neat,

rugged

duplex

connector

Volition

is

a

slick,

inexpensive

duplex

connector

that

uses

no

ferrule

at

all

E2000/LX‐5

is

like

a

LC

but

with

a

shutter

over

the

end

of

the

fiber

MU

looks

a

miniature

SC

with

a

1.25

mm

ferrule.

It's

more

popular

in

Japan.MT

is

a

12

fiber

connector

for

ribbon

cable.

It's

main

use

is

for

preterminated

cable

assemblies.

浙江大學(xué)光電信息系35

B.

Reliable

CW

GaAlAs

and

GaInAsP

laser

diodes

Basov

and

Javan

proposed

the

semiconductor

laser

diode

concept.

In

1962,

Robert

N.

Hall

demonstrated

the

first

laser

diode

device,

made

of

gallium

arsenide

and

emitted

at

850

nm

the

near‐infrared

band

of

the

spectrum.

Later,

in

1962,

Nick

Holonyak,

Jr.

demonstrated

the

first

semiconductor

laser

with

a

visible

emission.

This

first

semiconductor

laser

could

only

be

used

in

pulsed‐beam

operation,

and

when

cooled

to

liquid

nitrogen

temperatures

(77

K).

In

1970,

Zhores

Alferov,

in

the

USSR

(Union

of

Soviet

Socialist

Republics

),

and

Izuo

Hayashi

and

Morton

Panish

of

Bell

Telephone

Laboratories

also

independently

developed

room‐temperature,

continual‐operation

diode

lasers,

using

the

heterojunction

structure./wiki/LaserBasov

and

Javan

proposed

the

semiconductor

laser

diode

concept.Nikolay

Gennadiyevich

Basov

(Russian;

12/14/1922‐07/01/2001)

was

a

Sovietphysicist

and

educator.

For

his

fundamental

work

in

the

field

of

quantum

electronics

that

led

to

the

development

of

laser

and

maser,

Basov

shared

the

1964

Nobel

Prize

in

Physics

with

Alexander

Prokhorov

and

Charles

Hard

Townes.

浙江大學(xué)光電信息系A(chǔ)li

Mortimer

Javan

(born

12/26/1926)

is

an

Iranian

American

physicist

and

inventorat

MIT.

His

main

contributions

to

science

have

been

in

the

fields

of

quantum

physicsand

spectroscopy.

He

co‐invented

the

gas

laser

in

1960,

with

William

R.

Bennett.

Ali

Javan

has

been

ranked

Number

12

on

the

list

of

the

Top

100

living

geniuses.

36浙江大學(xué)光電信息系37First

helium‐neon

laser,

1960.First

helium‐neon

laser.

Left

to

right:

US

physicist

Donald

R.

Herriott

(1928‐2007),

Iranian‐US

physicist

Ali

Mortimer

Javan

(born

1926)

and

US

physicist

William

R.

Bennett

(1930‐2008),

with

the

first

helium‐neon

laser.

/media/147086/enlarge浙江大學(xué)光電信息系38Heterojunction

structureHerbert

Kroemer

(born

08/25/1928),

a

professor

at

UC,

Santa

Barbara,

received

his

Ph.D.

in

theoretical

physics

in

1952

from

the

University

of

G?ttingen,

Germany,

with

a

dissertation

on

hot

electron

effects

in

the

then‐new

transistor,

setting

the

stage

for

a

career

in

research

on

the

physics

of

semiconductor

devices.

In

2000,

the

Nobel

Prize

in

physics

was

awarded

jointly

to

Herbert

Kroemer

(UC

Santa

Barbara,

USA)

and

Zhores

I.

Alferov

(Ioffe

Institute,

Saint

Petersburg,

Russia)

for

"developing

semiconductor

heterostructures

used

in

high‐speed‐

and

opto‐electronics"

Zhores

Ivanovich

Alferov

(Russian,

Belarusian;

born

03/15/1930)

is

a

Sovietand

Russian

physicist

and

academic

who

contributed

significantly

to

the

creation

of

modern

heterostructure

physics

and

electronics.

浙江大學(xué)光電信息系39C.

Microfabrication

techniques

depositing

a

film,

patterning

the

film

with

the

desired

micro

features,

and

removing

(or

etching)

portions

of

the

film.For

memory

chip

fabrication:

~30

lithography

steps,

~10

oxidation

steps,

~20

etching

steps,

~10

doping

steps,

and

many

others.浙江大學(xué)光電信息系40Comparison

of

sizes

of

semiconductor

manufacturing

process

nodeswith

some

microscopic

objects

and

visible

light

wavelengths

Can

size

reduction

go

further?

Moore’s

law

might

expire.

Photonics

will

replace

electronics?

Optical

interconnects浙江大學(xué)光電信息系41

In

1980sOptical

fibers

largely

replaced

metallic

wires

in

telecommunications,A

number

of

manufacturers

began

production

of

PICs

for

use

in

a

variety

of

applications浙江大學(xué)光電信息系42

In

1990sThe

incorporation

of

optical

fibers

into

telecommunications

and

data‐transmission

networks

has

been

extended

to

the

subscriber

loop

in

many

systems.

This

provides

an

enormous

bandwidth

for

multichannel

transmission

of

voice,

video

and

data

signals.

Access

to

worldwide

communications

and

data

banks

has

been

provided

by

computer

networks

such

as

the

Internet.

We

are

in

the

process

of

developing

what

some

have

called

the

“Information

superhighway.”

The

implementation

of

this

technology

has

provided

continuing

impetus

to

the

development

of

new

integrated

optic

devices

and

systems

into

the

beginning

years

of

the

21st

century.Another

technological

advance

that

has

encouraged

the

development

of

new

integrated

optic

devices

in

recent

years

is

the

availability

of

improved

fabrication

methods.

Microtechnology,

which

involves

dimensions

on

the

order

of

micrometers,

has

evolved

into

nanotechnology,

in

which

nanometer‐sized

features

are

routinely

produced.

This

new

area

of

nanophotonics,

which

includes

the

fabrication

of

photonic

crystals.浙江大學(xué)光電信息系43Material

for

PIC’s

Electronics

IC:

silicon,

For

PIC’s:

No

one

substrate

material

will

be

optimum

for

all

elements.

浙江大學(xué)光電信息系44Hybrid

Versus

Monolithic

Approach

Hybrid

two

or

more

substrate

materials

are

somehow

bonded

together

to

optimize

performance

for

different

devices;

Advantage:

using

existing

technology,

piecing

together

devices

which

have

been

substantially

optimized

in

a

given

material

Disadvantage:

misalignment,

or

even

failure,

because

of

vibration

and

thermal

expansion.

Monolithic

a

single

substrate

material

is

used

for

all

devices;

Advantage:

cheaper,

reliable.

浙江大學(xué)光電信息系45

III–V

and

II–VI

Ternary

SystemsFor

a

system:

light

emitter

+

waveguide

+

detector

The

energy

bandgap

of

the

material

can

be

changed

over

a

wide

range

by

altering

the

relative

concentrations

of

elements.

gallium

aluminum

arsenide,

Ga(1?x)AlxAs.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論