2025屆江蘇省海安市數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆江蘇省海安市數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆江蘇省海安市數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆江蘇省海安市數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆江蘇省海安市數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省海安市數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列命題中不正確的是()A.一組數(shù)據(jù)1,2,3,3,4,5的眾數(shù)大于中位數(shù)B.數(shù)據(jù)6,5,4,3,3,3,2,2,2,1的分位數(shù)為5C.若甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙D.為調(diào)查學生每天平均閱讀時間,某中學從在校學生中,利用分層抽樣的方法抽取初中生20人,高中生10人.經(jīng)調(diào)查,這20名初中生每天平均閱讀時間為60分鐘,這10名高中生每天平均閱讀時間為90分鐘,那么被抽中的30名學生每天平均閱讀時間為70分鐘2.若函數(shù)恰有個零點,則的取值范圍是()A. B.C. D.3.已知函數(shù),若關于x的方程有五個不同實根,則m的值是()A.0或 B.C.0 D.不存在4.全稱量詞命題“,”的否定為()A., B.,C., D.,5.已知函數(shù),若實數(shù),則函數(shù)的零點個數(shù)為()A.0 B.1C.2 D.36.已知函數(shù)若方程恰有三個不同的實數(shù)解a,b,c(),則的取值范圍是().A. B.C. D.7.如圖,向量,,的起點與終點均在正方形網(wǎng)格的格點上,若,則()A. B.C.2 D.48.直三棱柱中,若,則異面直線與所成角的余弦值為A.0 B.C. D.9.設.若存在,使得,則的最小值是()A.2 B.C.3 D.10.已知是非零向量且滿足,,則與的夾角是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式tanx+12.已知,則函數(shù)的最大值是__________13.已知是定義在R上的偶函數(shù),且在上為增函數(shù),,則不等式的解集為___________.14.二次函數(shù)的部分對應值如下表:342112505則關于x不等式的解集為__________15.若函數(shù)在上存在零點,則實數(shù)的取值范圍是________16.已知一個扇形的弧長為,其圓心角為,則這扇形的面積為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知一扇形的圓心角為,所在圓的半徑為.(1)若,求扇形的弧長及該弧所在的弓形的面積;(2)若扇形的周長是一定值,當為多少弧度時,該扇形有最大面積?18.2021年秋季學期,某省在高一推進新教材,為此該省某市教育部門組織該市全體高中教師在暑假期間進行相關學科培訓,培訓后舉行測試(滿分100分),從該市參加測試的數(shù)學老師中抽取了100名老師并統(tǒng)計他們的測試分數(shù),將成績分成五組,第一組[65,70),第二組[70,75),第三組[75,80),第四組[80,85),第五組[85,90],得到如圖所示的頻率分布直方圖(1)求a的值以及這100人中測試成績在[80,85)的人數(shù);(2)估計全市老師測試成績的平均數(shù)(同組中的每個數(shù)據(jù)都用該組區(qū)間中點值代替)和第50%分數(shù)位(保留兩位小數(shù));(3)若要從第三、四、五組老師中用分層抽樣的方法抽取6人作學習心得交流分享,并在這6人中再抽取2人擔當分享交流活動的主持人,求第四組至少有1名老師被抽到的概率19.已知函數(shù),(1)若的值域為,求a的值(2)證明:對任意,總存在,使得成立20.袋子里有6個大小、質(zhì)地完全相同且?guī)в胁煌幪柕男∏?,其中?個紅球,2個白球,3個黑球,從中任取2個球.(1)寫出樣本空間;(2)求取出兩球顏色不同的概率;(3)求取出兩個球中至多一個黑球的概率.21.已知二次函數(shù)滿足:,且該函數(shù)的最小值為1.(1)求此二次函數(shù)的解析式;(2)若函數(shù)的定義域為(其中),問是否存在這樣的兩個實數(shù)m,n,使得函數(shù)的值域也為A?若存在,求出m,n的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由中位數(shù)以及眾數(shù)判斷A;由百分位數(shù)的定義計算判斷B;計算乙組數(shù)據(jù)的方差判斷C;計算被抽中的30名學生每天平均閱讀時間從而判斷D.【詳解】對于A,中位數(shù)為和眾數(shù)相等,故A錯誤;對于B,將該組數(shù)據(jù)從小到大排列為,,則該組數(shù)據(jù)的分位數(shù)為5,故B正確;對于C,乙組數(shù)據(jù),方差為,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙,故C正確;對于D,被抽中的30名學生每天平均閱讀時間為,故D正確;故選:A2、D【解析】由分段函數(shù)可知必須每段有且只有1個零點,寫出零點建立不等式組即可求解.【詳解】因為時至多有一個零點,單調(diào)函數(shù)至多一個零點,而函數(shù)恰有個零點,所以需滿足有1個零點,有1個零點,所以,解得,故選:D3、C【解析】令,做出的圖像,根據(jù)圖像確定至多存在兩個的值,使得與有五個交點時,的值或取值范圍,進而轉為求方程在的值或取值范圍有解,利用一元二次方程根的分布,即可求解.【詳解】做出圖像如下圖所示:令,方程,為,當時,方程沒有實數(shù)解,當或時,方程有2個實數(shù)解,當,方程有4個實數(shù)解,當時,方程有3個解,要使方程方程有五個實根,則方程有一根為1,另一根為0或大于1,當時,有或,當時,,或,滿足題意,當時,,或,不合題意,所以.故選:C.【點睛】本題考查復合方程的解,換元法是解題的關鍵,數(shù)形結合是解題的依賴,或直接用選項中的值代入驗證,屬于較難題.4、C【解析】由命題的否定的概念判斷.否定結論,存在量詞與全稱量詞互換.【詳解】根據(jù)全稱量詞命題的否定是存在量詞命題,可得命題“”的否定是“”故選:C.【點睛】本題考查命題的否定,屬于基礎題.5、D【解析】根據(jù)分段函數(shù)做出函數(shù)的圖象,運用數(shù)形結合的思想可求出函數(shù)的零點的個數(shù),得出選項.【詳解】令,得,根據(jù)分段函數(shù)的解析式,做出函數(shù)的圖象,如下圖所示,因為,由圖象可得出函數(shù)的零點個數(shù)為3個,故選:D.【點睛】本題考查函數(shù)零點,考查學生分析解決問題的能力,關鍵在于做出函數(shù)的圖象,運用數(shù)形結合的思想得出零點個數(shù),屬于中檔題.多選題6、A【解析】畫出的圖象,數(shù)形結合可得求出.【詳解】畫出的圖象所以方程恰有三個不同的實數(shù)解a,b,c(),可知m的取值范圍為,由題意可知,,所以,所以故選:A.7、D【解析】根據(jù)圖象求得正確答案.【詳解】由圖象可知.故選:D8、A【解析】連接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即異面直線與所成角為90°,所以余弦值為0.故選A.9、D【解析】由題設在上存在一個增區(qū)間,結合、且,有必為的一個子區(qū)間,即可求的范圍.【詳解】由題設知:,,又,所以在上存在一個增區(qū)間,又,所以,根據(jù)題設知:必為的一個子區(qū)間,即,所以,即的最小值是.故選:D.【點睛】關鍵點點睛:結合題設條件判斷出必為的一個子區(qū)間.10、B【解析】利用向量垂直求得,代入夾角公式即可.【詳解】設的夾角為;因為,,所以,則,則故選:B【點睛】向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.二、填空題:本大題共6小題,每小題5分,共30分。11、kπ,π4【解析】根據(jù)正切函數(shù)性質(zhì)求解、【詳解】由正切函數(shù)性質(zhì),由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案為:[kπ,kπ+π412、【解析】由函數(shù)變形為,再由基本不等式求得,從而有,即可得到答案.【詳解】∵函數(shù)∴由基本不等式得,當且僅當,即時取等號.∴函數(shù)的最大值是故答案為.【點睛】本題主要考查線性規(guī)劃的應用以及基本不等式的應用,.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).13、【解析】根據(jù)題意求出函數(shù)的單調(diào)區(qū)間及所過的定點,進而解出不等式.【詳解】因為是定義在R上的偶函數(shù),且在上為增函數(shù),,所以函數(shù)在上為減函數(shù),.所以且在上為增函數(shù),,在上為減函數(shù),.所以的解集為:.故答案為:.14、【解析】根據(jù)所給數(shù)據(jù)得到二次函數(shù)的對稱軸,即可得到,再根據(jù)函數(shù)的單調(diào)性,即可得解;【詳解】解:∵,∴對稱軸為,∴,又∵在上單調(diào)遞減,在上單調(diào)遞增,∴的解集為故答案為:15、【解析】分和并結合圖象討論即可【詳解】解:令,則有,原命題等價于函數(shù)與在上有交點,又因為在上單調(diào)遞減,且當時,,在上單調(diào)遞增,當時,作出兩函數(shù)的圖像,則兩函數(shù)在上必有交點,滿足題意;當時,如圖所示,只需,解得,即,綜上所述實數(shù)的取值范圍是.故答案為:16、2【解析】根據(jù)弧長公式求出對應的半徑,然后根據(jù)扇形的面積公式求面積即可.【詳解】設扇形的半徑為,圓心角為,弧長,可得=4,這條弧所在的扇形面積為,故答案為.【點睛】本題主要考查扇形的面積公式和弧長公式,意在考查對基礎知識與基本公式掌握的熟練程度,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】(1)根據(jù)弧長的公式和扇形的面積公式即可求扇形的弧長及該弧所在的弓形的面積;(2)根據(jù)扇形的面積公式,結合基本不等式即可得到結論【詳解】(1)設弧長為l,弓形面積為S弓,則α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周長C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.當且僅當α2=4,即α=2時,扇形面積有最大值.【點睛】本題主要考查扇形的弧長和扇形面積的計算,要求熟練掌握相應的公式,考查學生的計算能力18、(1);20;(2)分,76.67分(3)【解析】(1)根據(jù)頻率之和為1,可求得a的值,根據(jù)頻數(shù)的計算可求得測試成績在[80,85)的人數(shù);(2)根據(jù)頻率分布直方圖可計算中位數(shù),即可求得第50%分數(shù)位;(3)列舉出所有可能的抽法,再列出第四組至少有1名老師被抽到可能情況,根據(jù)古典概型的概率公式求得答案.【小問1詳解】由題意得:,解得;這100人中測試成績在[80,85)的人數(shù)為(人);【小問2詳解】平均數(shù)為:(分),設中位數(shù)為m,且,則,解得,故第50%分數(shù)位76.67分;【小問3詳解】第三組頻率為,第四組頻率為,第五組頻率為,故從第三、四、五組老師中用分層抽樣的方法抽取6人作學習心得交流分享,三組人數(shù)為3人,2人和1人,記第三組抽取人為,第四組抽取的人為,第五組抽取的人為,則抽取2人的所有情況如下:共15種,其中第四組至少有1名老師被抽到的抽法有共9種,故第四組至少有1名老師被抽到的概率為.19、(1)2(2)證明見解析【解析】(1)由題意,可得,從而即可求解;(2)利用對勾函數(shù)單調(diào)性求出在上的值域,再分三種情況討論二次函數(shù)在閉區(qū)間上的值域,然后證明的值域是值域的子集恒成立即可得證.【小問1詳解】解:因為的值域為,所以,解得【小問2詳解】證明:由題意,根據(jù)對勾函數(shù)的單調(diào)性可得在上單調(diào)遞增,所以設在上的值域為M,當,即時,在上單調(diào)遞增,因為,,所以;當,即時,在上單調(diào)遞減,因為,,所以;當,即時,,,所以;綜上,恒成立,即在上的值域是在上值域的子集恒成立,所以對任意總存在,使得成立.20、(1)答案見解析;(2);(3).【解析】(1)將1個紅球記為個白球記為個黑球記為,進而列舉出所有可能性,進而得到樣本空間;(2)由題意,有1紅1白,1紅1黑,1白1黑,共三大類情況,由(1),列舉出所有可能性,進而求出概率;(3)由題意,有1紅1白,1紅1黑,1白1黑,2白,共四大類情況,由(1),列舉出所有可能性,進而求出概率【小問1詳解】將1個紅球記為個白球記為個黑球記為,則樣本空間,共15個樣本點.【小問2詳解】記A事件為“取出兩球顏色不同”,則兩球顏色可能是1紅1白,1紅1黑,1白1黑,則包含11個樣本點,所以.【小問3詳解】記事件為“取出兩個球至多有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論