版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆寧夏青銅峽市吳忠中學(xué)分校高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.2.為調(diào)查學(xué)生的課外閱讀情況,學(xué)校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,23.點在圓上,點在直線上,則的最小值是()A. B.C. D.4.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.5.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.6.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標(biāo)軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.7.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.8.已知雙曲線的左焦點為F,O為坐標(biāo)原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.9.設(shè)是等比數(shù)列,則“對于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.直線的傾斜角的大小為()A. B.C. D.11.將正整數(shù)1,2,3,4,…按如圖所示的方式排成三角形數(shù)組,則第19行從左往右數(shù)第5個數(shù)是()A.381 B.361C.329 D.40012.函數(shù)的圖像大致是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓C交于A,B兩點,且,則______14.某企業(yè)有4個分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個分廠至少1人,則不同的分配方案種數(shù)為________.15.在數(shù)列中,,,記是數(shù)列的前項和,則=___.16.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值18.(12分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.19.(12分)已知圓的圓心在直線,且與直線相切于點.(1)求圓的方程;(2)直線過點且與圓相交,所得弦長為,求直線的方程.20.(12分)已知橢圓的焦距為,離心率為(1)求橢圓方程;(2)設(shè)過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且,,成等比數(shù)列,求的值21.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實數(shù)的取值范圍22.(10分)如圖,三棱柱的所有棱長都是,平面,為的中點,為的中點(1)證明:直線平面;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當(dāng)時,,命題為真,根據(jù)復(fù)合命題的真假關(guān)系,即可得出結(jié)論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當(dāng)時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復(fù)合命題真假的判斷,屬于基礎(chǔ)題.2、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.3、B【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.4、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關(guān)鍵點點睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計算能力,屬于基礎(chǔ)題5、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.6、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.7、D【解析】計算出每月應(yīng)還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D8、C【解析】由題意可得且,從而求出點的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設(shè)點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C9、C【解析】根據(jù)嚴(yán)格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴(yán)格遞增數(shù)列,顯然,所以“對于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”必要條件;對任意的正整數(shù)n都成立,所以中不可能同時含正項和負項,,即,或,即,當(dāng)時,有,即,是嚴(yán)格遞增數(shù)列,當(dāng)時,有,即,是嚴(yán)格遞增數(shù)列,所以“對于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”充分條件故選:C10、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選11、C【解析】觀察規(guī)律可知,從第一行起,每一行最后一個數(shù)是連續(xù)的完全平方數(shù),據(jù)此容易得出答案.【詳解】由圖中數(shù)字排列規(guī)律可知:第1行從左往右最后1個數(shù)是,第2行從左往右最后1個數(shù)是,第3行從左往右最后1個數(shù)是,……第18行從左往右最后1個數(shù)為,第19行從左往右第5個數(shù)是故選:C.12、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導(dǎo)得,當(dāng)或時,,當(dāng)時,,于是得在和上都單調(diào)遞增,在上單調(diào)遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標(biāo)準(zhǔn)方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.14、1560【解析】先把6名技術(shù)人員分成4組,每組至少一人,有兩種情況:(1)4個組的人數(shù)按3,1,1,1分配,(2)4個組的人數(shù)為2,2,1,1,求出所有的分組方法,然后再把4個組的人分給4個分廠,從而可求得答案【詳解】先把6名技術(shù)人員分成4組,每組至少一人.(1)若4個組的人數(shù)按3,1,1,1分配,則不同的分配方案有(種).(2)若4個組的人數(shù)為2,2,1,1,則不同的分配方案有(種).故所有分組方法共有20+45=65(種).再把4個組的人分給4個分廠,不同的方法有(種).故答案為:156015、930【解析】當(dāng)為偶數(shù)時,,所以數(shù)列前60項中偶數(shù)項的和,當(dāng)為奇數(shù)時,,因此數(shù)列是以1為首項,公差為2等差數(shù)列,前60項中奇數(shù)項的和為,所以.考點:遞推數(shù)列、等差數(shù)列.16、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)5.【解析】(1)設(shè)的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問1詳解】解:設(shè)的公比為q,由題設(shè)得由已知得,解得(舍去),或故或【小問2詳解】解:若,則由,得,解得若,則由,得,因為,所以此方程沒有正整數(shù)解綜上,18、(1)(2)線段上存在一點,當(dāng)時,平面.【解析】(1)設(shè)點到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點作交于點,連接,可證明平面平面,從而可得出答案.【小問1詳解】由,,為中點,則由平面,平面,則又,且,則平面又,則平面,且都在平面內(nèi)所以所以,取的中點,連接,則,所以,所以所以所以則設(shè)點到平面的距離為,則由即,即【小問2詳解】線段上是否存在一點,使平面.由(1)連接,則四邊形為平行四邊形,則過點作交于,則為中點,則為的中點,即又平面,則平面過點作交于點,連接,則,即又平面,所以平面又,所以平面平面又平面,所以平面所以線段上存在一點,當(dāng)時,平面.19、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對直線的斜率是否存在進行分類討論,設(shè)出直線的方程,利用點到直線的距離公式求出參數(shù),即可得出直線的方程.【小問1詳解】解:過點且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點,聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時,直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時,設(shè)直線的方程為,即,由題意可得,解得,此時,直線的方程為,即.綜上所述,直線的方程為或.20、(1);(2).【解析】(1)由焦距為,離心率為結(jié)合性質(zhì),列出關(guān)于的方程組,求出從而求出橢圓方程;(2)設(shè)出直線方程,代入橢圓方程,求出點D、E的坐標(biāo),然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解【詳解】(1)由已知,,解得,所以橢圓的方程為(2)由(1)得過點的直線為,由,得,所以,所以,依題意,因為,,成等比數(shù)列,所以,所以,即,當(dāng)時,,無解,當(dāng)時,,解得,所以,解得,所以,當(dāng),,成等比數(shù)列時,【點睛】方法點睛(1)求橢圓方程的常用方法:①待定系數(shù)法;②定義法;③相關(guān)點法(2)直線與圓錐曲線的綜合問題,常將直線方程代入圓錐曲線方程,從而得到關(guān)于(或)的一元二次方程,設(shè)出交點坐標(biāo)),利用韋達定理得出坐標(biāo)的關(guān)系,同時注意判別式大于零求出參數(shù)的范圍(或者得到關(guān)于參數(shù)的不等關(guān)系),然后將所求轉(zhuǎn)化到參數(shù)上來再求解.如本題及,聯(lián)立即可求解.注意圓錐曲線問題中,常參數(shù)多、字母多、運算繁瑣,應(yīng)注意設(shè)而不求的思想、整體思想的應(yīng)用.屬于中檔題.21、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實數(shù)、的方程組,即可解得實數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,取最小值,當(dāng)時,取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年AI智能營銷技術(shù)合作合同樣本
- 二零二五年度生態(tài)環(huán)保木工加工廠合作合同4篇
- 2025年醫(yī)療護士協(xié)議
- 2025年增資協(xié)議書面詳細約定內(nèi)容文本
- 2025年產(chǎn)品分銷渠道協(xié)定書
- 2025年家裝風(fēng)水合同
- 2025年埋頭競業(yè)禁止合同
- 2025版智能家居燈具音響設(shè)備一體化采購合同4篇
- 2025年媒介環(huán)境分析協(xié)議
- 2025版學(xué)校食堂豬肉食品安全風(fēng)險評估與監(jiān)控合同2篇
- 2024人教版高中英語語境記單詞【語境記單詞】新人教版 選擇性必修第2冊
- 能源管理總結(jié)報告
- 挖掘機售后保養(yǎng)及維修服務(wù)協(xié)議(2024版)
- 充電樁巡查記錄表
- 阻燃材料的阻燃機理建模
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動化技術(shù)規(guī)范編制說明
- 2024高考物理全國乙卷押題含解析
- 介入科圍手術(shù)期護理
- 青光眼術(shù)后護理課件
- 設(shè)立工程公司組建方案
評論
0/150
提交評論