浙江省湖州市安吉縣2024屆中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第1頁(yè)
浙江省湖州市安吉縣2024屆中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第2頁(yè)
浙江省湖州市安吉縣2024屆中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第3頁(yè)
浙江省湖州市安吉縣2024屆中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第4頁(yè)
浙江省湖州市安吉縣2024屆中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省湖州市安吉縣2024屆中考數(shù)學(xué)模擬預(yù)測(cè)題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,62.天氣越來(lái)越熱,為防止流行病傳播,學(xué)校決定用420元購(gòu)買某種牌子的消毒液,經(jīng)過(guò)還價(jià),每瓶便宜0.5元,結(jié)果比用原價(jià)購(gòu)買多買了20瓶,求原價(jià)每瓶多少元?設(shè)原價(jià)每瓶x元,則可列出方程為()A.-=20 B.-=20C.-=20 D.3.如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.464.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測(cè)量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米5.某公司有11名員工,他們所在部門(mén)及相應(yīng)每人所創(chuàng)年利潤(rùn)如下表所示,已知這11個(gè)數(shù)據(jù)的中位數(shù)為1.部門(mén)人數(shù)每人所創(chuàng)年利潤(rùn)(單位:萬(wàn)元)11938743這11名員工每人所創(chuàng)年利潤(rùn)的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,66.﹣2的絕對(duì)值是()A.2 B. C. D.7.如圖,DE是線段AB的中垂線,,,,則點(diǎn)A到BC的距離是A.4 B. C.5 D.68.如圖,已知正方形ABCD的邊長(zhǎng)為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①≌;②;③∠GDE=45°;④DG=DE在以上4個(gè)結(jié)論中,正確的共有()個(gè)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9.已知二次函數(shù)(為常數(shù)),當(dāng)時(shí),函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或310.a(chǎn)、b是實(shí)數(shù),點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若式子有意義,則x的取值范圍是.12.若圓錐的母線長(zhǎng)為4cm,其側(cè)面積,則圓錐底面半徑為cm.13.21世紀(jì)納米技術(shù)將被廣泛應(yīng)用.納米是長(zhǎng)度的度量單位,1納米=0.000000001米,則12納米用科學(xué)記數(shù)法表示為_(kāi)______米.14.長(zhǎng)、寬分別為a、b的矩形,它的周長(zhǎng)為14,面積為10,則a2b+ab2的值為_(kāi)____.15.如圖,等腰△ABC中,AB=AC=5,BC=8,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),直線DE垂直平分BF,垂足為D.當(dāng)△ACF是直角三角形時(shí),BD的長(zhǎng)為_(kāi)____.16.如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),以A為圓心,AB為半徑的弧與BE交于點(diǎn)F,則∠EFD=_____°.三、解答題(共8題,共72分)17.(8分)小麗和哥哥小明分別從家和圖書(shū)館同時(shí)出發(fā),沿同一條路相向而行,小麗開(kāi)始跑步,遇到哥哥后改為步行,到達(dá)圖書(shū)館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開(kāi)出發(fā)的時(shí)間x(min)之間的函數(shù)圖象如圖所示:(1)求兩人相遇時(shí)小明離家的距離;(2)求小麗離距離圖書(shū)館500m時(shí)所用的時(shí)間.18.(8分)A糧倉(cāng)和B糧倉(cāng)分別庫(kù)存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉(cāng)調(diào)運(yùn)一噸糧食到C市和D市的運(yùn)費(fèi)分別為400元和800元;從B糧倉(cāng)調(diào)運(yùn)一噸糧食到C市和D市的運(yùn)費(fèi)分別為300元和500元.設(shè)B糧倉(cāng)運(yùn)往C市糧食x噸,求總運(yùn)費(fèi)W(元)關(guān)于x的函數(shù)關(guān)系式.(寫(xiě)出自變量的取值范圍)若要求總運(yùn)費(fèi)不超過(guò)9000元,問(wèn)共有幾種調(diào)運(yùn)方案?求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?19.(8分)湯姆斯杯世界男子羽毛球團(tuán)體賽小組賽比賽規(guī)則:兩隊(duì)之間進(jìn)行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊(duì)獲勝.假如甲,乙兩隊(duì)每局獲勝的機(jī)會(huì)相同.若前四局雙方戰(zhàn)成2:2,那么甲隊(duì)最終獲勝的概率是__________;現(xiàn)甲隊(duì)在前兩局比賽中已取得2:0的領(lǐng)先,那么甲隊(duì)最終獲勝的概率是多少?20.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點(diǎn)D,過(guò)點(diǎn)D作∠ABD=∠ADE,交AC于點(diǎn)E.(1)求證:DE為⊙O的切線.(2)若⊙O的半徑為,AD=,求CE的長(zhǎng).21.(8分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對(duì)邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.22.(10分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點(diǎn)E處有一棵盛開(kāi)的桃花的小桃樹(shù),他想利用平面鏡測(cè)量的方式計(jì)算一下小桃樹(shù)到山腳下的距離,即DE的長(zhǎng)度,小華站在點(diǎn)B的位置,讓同伴移動(dòng)平面鏡至點(diǎn)C處,此時(shí)小華在平面鏡內(nèi)可以看到點(diǎn)E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請(qǐng)你利用以上的數(shù)據(jù)求出DE的長(zhǎng)度.(結(jié)果保留根號(hào))23.(12分)由甲、乙兩個(gè)工程隊(duì)承包某校校園的綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工作所需的時(shí)間比是3∶2,兩隊(duì)共同施工6天可以完成.(1)求兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?(2)此項(xiàng)工程由甲、乙兩隊(duì)共同施工6天完成任務(wù)后,學(xué)校付給他們4000元報(bào)酬,若按各自完成的工程量分配這筆錢(qián),問(wèn)甲、乙兩隊(duì)各應(yīng)得到多少元?24.如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動(dòng)點(diǎn)(不與B、C重合),AE、BD交于點(diǎn)F.(1)當(dāng)AE平分∠BAC時(shí),求證:∠BEF=∠BFE;(2)當(dāng)E運(yùn)動(dòng)到BC中點(diǎn)時(shí),若BE=2,BD=2.4,AC=5,求AB的長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【點(diǎn)睛】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).2、C【解析】

關(guān)鍵描述語(yǔ)是:“結(jié)果比用原價(jià)多買了1瓶”;等量關(guān)系為:原價(jià)買的瓶數(shù)-實(shí)際價(jià)格買的瓶數(shù)=1.【詳解】原價(jià)買可買瓶,經(jīng)過(guò)還價(jià),可買瓶.方程可表示為:﹣=1.故選C.【點(diǎn)睛】考查了由實(shí)際問(wèn)題抽象出分式方程.列方程解應(yīng)用題的關(guān)鍵步驟在于找相等關(guān)系.本題要注意討價(jià)前后商品的單價(jià)的變化.3、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn)得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn),∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識(shí)點(diǎn).4、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問(wèn)題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.5、D【解析】

根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計(jì)算即可.【詳解】解:這11個(gè)數(shù)據(jù)的中位數(shù)是第8個(gè)數(shù)據(jù),且中位數(shù)為1,,則這11個(gè)數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬(wàn)元,平均數(shù)為萬(wàn)元.故選:.【點(diǎn)睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關(guān)鍵.6、A【解析】分析:根據(jù)數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值的定義,在數(shù)軸上,點(diǎn)﹣2到原點(diǎn)的距離是2,所以﹣2的絕對(duì)值是2,故選A.7、A【解析】

作于利用直角三角形30度角的性質(zhì)即可解決問(wèn)題.【詳解】解:作于H.

垂直平分線段AB,

,

,

,

,

,

,,

,

故選A.【點(diǎn)睛】本題考查線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,屬于中考??碱}型.8、C【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過(guò)勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯(cuò)誤的.【詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯(cuò)誤;∴正確說(shuō)法是①②③故選:C【點(diǎn)睛】本題綜合性較強(qiáng),考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,有一定的難度.9、A【解析】

由解析式可知該函數(shù)在x=h時(shí)取得最小值1,x>h時(shí),y隨x的增大而增大;當(dāng)x<h時(shí),y隨x的增大而減小;根據(jù)1≤x≤3時(shí),函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時(shí),y取得最小值5;②若h>3,可得當(dāng)x=3時(shí),y取得最小值5,分別列出關(guān)于h的方程求解即可.【詳解】解:∵x>h時(shí),y隨x的增大而增大,當(dāng)x<h時(shí),y隨x的增大而減小,∴①若h<1,當(dāng)時(shí),y隨x的增大而增大,∴當(dāng)x=1時(shí),y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當(dāng)時(shí),y隨x的增大而減小,當(dāng)x=3時(shí),y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時(shí),當(dāng)x=h時(shí),y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進(jìn)行分類討論是解題的關(guān)鍵.10、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個(gè)象限內(nèi),y隨x的增大而增大,∵點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、且【解析】

∵式子在實(shí)數(shù)范圍內(nèi)有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.12、3【解析】∵圓錐的母線長(zhǎng)是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開(kāi)扇形的弧長(zhǎng)為:l==6π,∵錐的側(cè)面展開(kāi)扇形的弧長(zhǎng)等于圓錐的底面周長(zhǎng),∴r==3cm,13、1.2×10﹣1.【解析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點(diǎn)睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.14、1.【解析】

由周長(zhǎng)和面積可分別求得a+b和ab的值,再利用因式分解把所求代數(shù)式可化為ab(a+b),代入可求得答案【詳解】∵長(zhǎng)、寬分別為a、b的矩形,它的周長(zhǎng)為14,面積為10,

∴a+b==7,ab=10,

∴a2b+ab2=ab(a+b)=10×7=1,

故答案為:1.【點(diǎn)睛】本題主要考查因式分解的應(yīng)用,把所求代數(shù)式化為ab(a+b)是解題的關(guān)鍵.15、2或【解析】

分兩種情況討論:(1)當(dāng)時(shí),,利用等腰三角形的三線合一性質(zhì)和垂直平分線的性質(zhì)可解;(2)當(dāng)時(shí),過(guò)點(diǎn)A作于點(diǎn)M,證明列比例式求出,從而得,再利用垂直平分線的性質(zhì)得.【詳解】解:(1)當(dāng)時(shí),∵垂直平分,.(2)當(dāng)時(shí),過(guò)點(diǎn)A作于點(diǎn),在與中,.故答案為或.【點(diǎn)睛】本題主要考查了等腰三角形的三線合一性質(zhì)和線段垂直平分線的性質(zhì)定理得應(yīng)用.本題難度中等.16、45【解析】

由四邊形ABCD為正方形及半徑相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等邊對(duì)等角得到兩對(duì)角相等,由四邊形ABFD的內(nèi)角和為360度,得到四個(gè)角之和為270,利用等量代換得到∠ABF+∠ADF=135°,進(jìn)而確定出∠1+∠2=45°,由∠EFD為三角形DEF的外角,利用外角性質(zhì)即可求出∠EFD的度數(shù).【詳解】∵正方形ABCD,AF,AB,AD為圓A半徑,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四邊形ABFD內(nèi)角和為360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°?90°=45°,∵∠EFD為△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案為45【點(diǎn)睛】此題考查了切線的性質(zhì),四邊形的內(nèi)角和,等腰三角形的性質(zhì),以及正方形的性質(zhì),熟練掌握性質(zhì)是解本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)兩人相遇時(shí)小明離家的距離為1500米;(2)小麗離距離圖書(shū)館500m時(shí)所用的時(shí)間為分.【解析】

(1)根據(jù)題意得出小明的速度,進(jìn)而得出得出小明離家的距離;(2)由(1)的結(jié)論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據(jù)題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時(shí)小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設(shè)小麗離距離圖書(shū)館500m時(shí)所用的時(shí)間為x分,根據(jù)題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書(shū)館500m時(shí)所用的時(shí)間為分.【點(diǎn)睛】本題由函數(shù)圖像獲取信息,以及一元一次方程的應(yīng)用,由函數(shù)圖像正確獲取信息是解答本題的關(guān)鍵.18、(1)w=200x+8600(0≤x≤6);(2)有3種調(diào)運(yùn)方案,方案一:從B市調(diào)運(yùn)到C市0臺(tái),D市6臺(tái);從A市調(diào)運(yùn)到C市10臺(tái),D市2臺(tái);方案二:從B市調(diào)運(yùn)到C市1臺(tái),D市5臺(tái);從A市調(diào)運(yùn)到C市9臺(tái),D市3臺(tái);方案三:從B市調(diào)運(yùn)到C市2臺(tái),D市4臺(tái);從A市調(diào)運(yùn)到C市8臺(tái),D市4臺(tái);(3)從A市調(diào)運(yùn)到C市10臺(tái),D市2臺(tái);最低運(yùn)費(fèi)是8600元.【解析】

(1)設(shè)出B糧倉(cāng)運(yùn)往C的數(shù)量為x噸,然后根據(jù)A,B兩市的庫(kù)存量,和C,D兩市的需求量,分別表示出B運(yùn)往C,D的數(shù)量,再根據(jù)總費(fèi)用=A運(yùn)往C的運(yùn)費(fèi)+A運(yùn)往D的運(yùn)費(fèi)+B運(yùn)往C的運(yùn)費(fèi)+B運(yùn)往D的運(yùn)費(fèi),列出函數(shù)關(guān)系式;(2)由(1)中總費(fèi)用不超過(guò)9000元,然后根據(jù)取值范圍來(lái)得出符合條件的方案;(3)根據(jù)(1)中的函數(shù)式以及自變量的取值范圍即可得出費(fèi)用最小的方案.【詳解】解:(1)設(shè)B糧倉(cāng)運(yùn)往C市糧食x噸,則B糧倉(cāng)運(yùn)往D市糧食6﹣x噸,A糧倉(cāng)運(yùn)往C市糧食10﹣x噸,A糧倉(cāng)運(yùn)往D市糧食12﹣(10﹣x)=x+2噸,總運(yùn)費(fèi)w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3種調(diào)運(yùn)方案方案一:從B市調(diào)運(yùn)到C市0臺(tái),D市6臺(tái);從A市調(diào)運(yùn)到C市10臺(tái),D市2臺(tái);方案二:從B市調(diào)運(yùn)到C市1臺(tái),D市5臺(tái);從A市調(diào)運(yùn)到C市9臺(tái),D市3臺(tái);方案三:從B市調(diào)運(yùn)到C市2臺(tái),D市4臺(tái);從A市調(diào)運(yùn)到C市8臺(tái),D市4臺(tái);(3)w=200x+8600k>0,所以當(dāng)x=0時(shí),總運(yùn)費(fèi)最低.也就是從B市調(diào)運(yùn)到C市0臺(tái),D市6臺(tái);從A市調(diào)運(yùn)到C市10臺(tái),D市2臺(tái);最低運(yùn)費(fèi)是8600元.【點(diǎn)睛】本題重點(diǎn)考查函數(shù)模型的構(gòu)建,考查利用一次函數(shù)的有關(guān)知識(shí)解答實(shí)際應(yīng)用題,解答一次函數(shù)的應(yīng)用問(wèn)題中,要注意自變量的取值范圍還必須使實(shí)際問(wèn)題有意義.19、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)畫(huà)樹(shù)狀圖展示所有8種等可能的結(jié)果數(shù),再找出甲至少勝一局的結(jié)果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊(duì)最終獲勝的概率是;(2)畫(huà)樹(shù)狀圖為:共有8種等可能的結(jié)果數(shù),其中甲至少勝一局的結(jié)果數(shù)為7,所以甲隊(duì)最終獲勝的概率=.點(diǎn)睛:本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.20、(1)證明見(jiàn)解析;(2)CE=1.【解析】

(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根據(jù)切線的判定推出即可;(2)求出CD,AC的長(zhǎng),證△CDE∽△CAD,得出比例式,求出結(jié)果即可.【詳解】(1)連接OD,∵AB是直徑,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD為半徑,∴DE為⊙O的切線;(2)∵⊙O的半徑為,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)與切線的判定,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與切線的判定.21、(1);(2);(3).【解析】試題分析:(1)先利用勾股定理計(jì)算出AC=4,然后根據(jù)余切的定義求解;(2)根據(jù)余切的定義得到ctan60°=,然后把tan60°=代入計(jì)算即可;(3)作AH⊥BC于H,如圖2,先在Rt△ACH中利用余切的定義得到ctanC==2,則可設(shè)AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接著再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根據(jù)余弦的定義求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如圖2,在Rt△ACH中,ctanC==2,設(shè)AH=x,則CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考點(diǎn):解直角三角形.22、DE的長(zhǎng)度為6+1.【解析】

根據(jù)相似三角形的判定與性質(zhì)解答即可.【詳解】解:過(guò)E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設(shè)EF為x,DF=x,∵∠B=∠EFC

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論