版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
西安市重點中學2025屆高三數(shù)學第一學期期末調研模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則為()A. B. C. D.2.方程的實數(shù)根叫作函數(shù)的“新駐點”,如果函數(shù)的“新駐點”為,那么滿足()A. B. C. D.3.若函數(shù)的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.4.已知角的終邊經(jīng)過點,則A. B.C. D.5.若,,,則下列結論正確的是()A. B. C. D.6.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-17.已知函數(shù)是定義在上的偶函數(shù),且在上單調遞增,則()A. B.C. D.8.已知函數(shù),若函數(shù)的所有零點依次記為,且,則()A. B. C. D.9.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.10.如圖,在中,,且,則()A.1 B. C. D.11.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼模v坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變12.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調增區(qū)間是____;最大值為____.14.在平面直角坐標系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是______.15.設為正實數(shù),若則的取值范圍是__________.16.已知函數(shù),則關于的不等式的解集為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.18.(12分)某大學開學期間,該大學附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結算方案:方案規(guī)定每日底薪100元,外賣業(yè)務每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務量,現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業(yè)務量不少于65單的概率;(2)從以往統(tǒng)計數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)19.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.20.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.21.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.22.(10分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.2、D【解析】
由題設中所給的定義,方程的實數(shù)根叫做函數(shù)的“新駐點”,根據(jù)零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數(shù)根叫做函數(shù)的“新駐點”,對于函數(shù),由于,,設,該函數(shù)在為增函數(shù),,,在上有零點,故函數(shù)的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..3、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數(shù),利用導數(shù)研究函數(shù)單調性,分析即得解【詳解】函數(shù)的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.4、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.5、D【解析】
根據(jù)指數(shù)函數(shù)的性質,取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質,可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質,求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.6、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎題.7、C【解析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結合函數(shù)的單調性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.8、C【解析】
令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點是將所求的式子拆分為的形式.9、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數(shù)學運算的核心素養(yǎng).10、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.11、A【解析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關系,屬于中檔題.12、D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.二、填空題:本題共4小題,每小題5分,共20分。13、(或寫成)【解析】試題分析:設,取中點則,因此,所以,因為在單調遞增,最大值為所以單調增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調區(qū)間14、【解析】
作出圖像,設點,根據(jù)已知可得,,且,可解出,計算即得.【詳解】如圖,設,圓心坐標為,可得,,,,,解得,,即的長是.故答案為:【點睛】本題考查直線與圓的位置關系,以及求平面兩點間的距離,運用了數(shù)形結合的思想.15、【解析】
根據(jù),可得,進而,有,而,令,得到,再用導數(shù)法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當時,,當時,所以當時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應用和導數(shù)法求最值,還考查了運算求解的能力,屬于難題,16、【解析】
判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調遞增,,即,∴∴,即x>故答案為:【點睛】本題考查函數(shù)的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結論可求得關于的表達式,采用換元法將問題轉化為,的值域的求解問題,結合函數(shù)單調性可求得值域;結合兩種情況的結論可得最終結果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內單調遞減,.綜上所述:四邊形面積的取值范圍是.【點睛】本題考查直線與橢圓的綜合應用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關鍵是能夠將所求面積表示為關于某一變量的函數(shù),將問題轉化為函數(shù)值域的求解問題.18、(1)0.4;(2);(3)應選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨立重復試驗概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質即可求得至少有兩名騎手選擇方案的概率;(3)設騎手每日完成外賣業(yè)務量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計算兩種計算方式下的數(shù)學期望,并根據(jù)數(shù)學期望作出選擇.【詳解】(1)設事件為“隨機選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務量不少于65單的頻率分別為,∵,∴估計為0.4.(2)設事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設騎手每日完成外賣業(yè)務量為件,方案的日工資,方案的日工資,所以隨機變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應選擇方案.【點睛】本題考查了頻率分布直方圖的簡單應用,獨立重復試驗概率的求法,數(shù)學期望的求法并由期望作出方案選擇,屬于中檔題.19、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.20、(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】本題考查基本不等式的應用,利用基本不等式和放縮法求最值,考查化簡計算能力.21、(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)大合集人員管理十篇
- 2024年城管督查個人總結
- 寒假自習課 25春初中道德與法治八年級下冊教學課件 第三單元 第五課 第1課時 根本政治制度
- 建筑工程行業(yè)安全管理工作總結
- 2011年高考語文試卷(大綱版全國Ⅱ卷)(空白卷)
- 化妝品行業(yè)銷售工作總結
- 小學數(shù)學教學計劃18篇
- 2023年項目部治理人員安全培訓考試題含下載答案可打印
- 2023年-2024年項目部安全培訓考試題答案往年題考
- 競業(yè)限制協(xié)議書三篇
- 項目部領導施工現(xiàn)場值班帶班交接班記錄表
- 2023年江蘇小高考歷史試卷
- 《運動解剖學》課程實驗課教案
- 2023年貴州貴安新區(qū)產(chǎn)業(yè)發(fā)展控股集團有限公司招聘筆試題庫含答案解析
- 現(xiàn)金盤點表完整版
- 精神病醫(yī)院管理制度
- 事業(yè)單位公開招聘工作人員政審表
- GB/T 25840-2010規(guī)定電氣設備部件(特別是接線端子)允許溫升的導則
- 2020-2021學年貴州省黔東南州人教版六年級上冊期末文化水平測試數(shù)學試卷(原卷版)
- 魯科版化學必修二 1.1 原子結構 課件
- 國家開放大學《西方行政學說》形考任務1-4參考答案
評論
0/150
提交評論