版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆上海市比樂中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標(biāo)準(zhǔn)差分別為和,則()AB.C.D.2.若圓與直線相切,則()A.3 B.或3C. D.或3.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結(jié)論中,正確結(jié)論的序號是A.①②③ B.②④C.③④ D.②③④4.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或75.已知公比不為1的等比數(shù)列,其前n項(xiàng)和為,,則()A.2 B.4C.5 D.256.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.設(shè),若,則()A. B.C. D.8.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.459.如圖,某圓錐軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.10.雙曲線實(shí)軸長為()A.1 B.C.2 D.11.已知橢圓和雙曲線有共同的焦點(diǎn),分別是它們的在第一象限和第三象限的交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.312.已知等差數(shù)列滿足,則其前10項(xiàng)之和為()A.140 B.280C.68 D.56二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線的方向向量分別為,若,則實(shí)數(shù)m等于___________.14.已知,且,則_____________15.命題“,”為假命題,則實(shí)數(shù)a的取值范圍是______16.圓的圓心坐標(biāo)為___________;半徑為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)判斷的零點(diǎn)個數(shù);(2)若對任意恒成立,求的取值范圍18.(12分)已知點(diǎn),(1)若過點(diǎn)P作的切線只有一條,求實(shí)數(shù)的值及切線方程;(2)過點(diǎn)P作斜率為1的直線l與相交于M,N兩點(diǎn),當(dāng)面積最大時,求實(shí)數(shù)的值19.(12分)已知的內(nèi)角A,B,C的對邊分別為a,b,c.(1)若,,,求邊長c;(2),,,求角C.20.(12分)已知橢圓C:,右焦點(diǎn)為F(,0),且離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)M,N是橢圓C上不同的兩點(diǎn),且直線MN與圓O:相切,若T為弦MN的中點(diǎn),求|OT||MN|的取值范圍21.(12分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨(dú)立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.22.(10分)如圖,在四棱錐中,底面是矩形,平面于點(diǎn)M連接.(1)求證:平面;(2)求平面與平面所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.2、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因?yàn)閳A與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B3、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點(diǎn)的分布逐項(xiàng)判斷可得正確的選項(xiàng).【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補(bǔ)角為與所成的角,因?yàn)?,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點(diǎn)睛】本題考查正方體的平面展開圖,注意展開圖中的點(diǎn)與正方體中的頂點(diǎn)的對應(yīng)關(guān)系,本題屬于容易題.4、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D5、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)求得,從而可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,則,所以,則.故選:B.6、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D7、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因?yàn)?,且,所?所以,,所以.故選:B8、C【解析】設(shè)雙曲線方程為,,由已知可得,并求得雙曲線上一點(diǎn)的坐標(biāo),把點(diǎn)的坐標(biāo)代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設(shè)點(diǎn)是雙曲線與截面的一個交點(diǎn),設(shè)雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:9、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.10、B【解析】由雙曲線的標(biāo)準(zhǔn)方程可求出,即可求雙曲線的實(shí)軸長.【詳解】由可得:,,即,實(shí)軸長,故選:B11、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查共焦點(diǎn)的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點(diǎn)三角形的關(guān)系列出齊次方程式進(jìn)行求解.12、A【解析】根據(jù)等差數(shù)列的性質(zhì),可得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由題意,等差數(shù)列滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以數(shù)列的前10項(xiàng)和為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)向量垂直與數(shù)量積的等價關(guān)系,,計(jì)算即可.【詳解】因?yàn)椋瑒t其方向向量,,解得.故答案為:2.14、2【解析】由共線向量得,解方程即可.【詳解】因?yàn)?,所以,解?故答案為:215、【解析】寫出原命題的否定,再利用二次型不等式恒成立求解作答.【詳解】因命題“,”為假命題,則命題“,”為真命題,當(dāng)時,恒成立,則,當(dāng)時,必有,解得,所以實(shí)數(shù)a的取值范圍是.故答案為:16、①.②.【解析】配方后可得圓心坐標(biāo)和半徑【詳解】將圓的一般方程化為圓標(biāo)準(zhǔn)方程是,圓心坐標(biāo)為,半徑為故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)個;(2).【解析】(1)求,利用導(dǎo)數(shù)判斷的單調(diào)性,結(jié)合單調(diào)性以及零點(diǎn)存在性定理即可求解;(2)由題意可得對任意恒成立,令,則,利用導(dǎo)數(shù)求的最小值即可求解.【小問1詳解】的定義域?yàn)椋煽傻?,?dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,,,此時在上無零點(diǎn),當(dāng)時,,,,且在上單調(diào)遞增,由零點(diǎn)存在定理可得在區(qū)間上存在個零點(diǎn),綜上所述有個零點(diǎn).【小問2詳解】由題意可得:對任意恒成立,即對任意恒成立,令,則,由可得:,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以,所以的取值范圍.18、(1);當(dāng)時,切線方程為;當(dāng)時,切線方程為;(2)或【解析】(1)根據(jù)題意可知P在圓上,據(jù)此即可求t和切線方程;(2)的面積,則當(dāng)面積最大時,.即,據(jù)此即可求出圓心O到直線l的距離,即可求出t的數(shù)值.【小問1詳解】由題意得點(diǎn)在上,∴,,①當(dāng)時,切點(diǎn),直線OP的斜率,切線斜率,切線方程為,即②當(dāng)時,切點(diǎn),直線OP的斜率,切線斜率,切線方程,即【小問2詳解】∵的面積,則當(dāng)面積最大時,.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設(shè)圓心O到直線l的距離為d,則的面積,當(dāng)且僅當(dāng),即時取等號(下同)19、(1)(2)或【解析】(1)根據(jù)余弦定理可求得答案;(2)根據(jù)正弦定理和三角形的內(nèi)角和可求得答案.【小問1詳解】解:由余弦定理得:,所以.【小問2詳解】解:由正弦定理得:得,所以或120°,又因?yàn)?,所以,所以或即?20、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當(dāng)直線的斜率不存在或?yàn)?,易求,當(dāng)直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當(dāng)直線MN斜率為0時,不妨取直線MN為??=,則,此時,則;當(dāng)直線MN斜率不存在,不妨取直線MN為x=,則,此時,則;當(dāng)直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,,因?yàn)橹本€MN與圓相切,所以,即,又因?yàn)橹本€MN與橢圓C交于M,N兩點(diǎn):由,得,則,所以MN中點(diǎn)T坐標(biāo)為,則,,所以又,當(dāng)且僅當(dāng),即取等號,∴|OT||MN|;綜上所述:|OT|?|MN|的取值范圍為[,3].21、(1)甲獲得錄取的可能性大;(2)【解析】(1)利用獨(dú)立事件的乘法公式求出甲、乙兩人被錄取的概率并比較大小,即得結(jié)果.(2)應(yīng)用對立事件、獨(dú)立事件的概率求法,結(jié)合互斥事件的加法公式求恰有一人獲得錄取的概率.【小問1詳解】記“甲通過筆試”為事件,“甲通過面試”為事件,“甲獲得錄取”為事件A,“乙通過筆試”為事件,“乙通過面試”為事件,“乙獲得錄取”為事件B,則,,即,所以甲獲得錄取的可能性大.【小問2詳解】記“甲乙兩人恰有一人獲得錄取”為事件C,則.22、(1)證明見詳解(2)【解析】(1)連接,交于點(diǎn),則為中點(diǎn),再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024適用型貸款利息合同書樣本版
- 2025年度彩色印刷設(shè)備升級改造合同3篇
- 2024年度城市基礎(chǔ)設(shè)施建設(shè)項(xiàng)目合同
- 二零二五年度綠色能源開發(fā)項(xiàng)目承包合同范本3篇
- 2025年度航空航天零部件定制設(shè)計(jì)與運(yùn)輸服務(wù)合同3篇
- 2024物業(yè)委托經(jīng)營管理合同
- 2025年水果種植基地與冷鏈物流公司合作合同3篇
- 二零二五版科技型企業(yè)貸款合同中的物權(quán)擔(dān)保與研發(fā)成果3篇
- 2025年蔬菜廢棄物資源化利用合作合同3篇
- 二零二五年版市政工程招標(biāo)投標(biāo)合同模板3篇
- 物業(yè)民法典知識培訓(xùn)課件
- 2023年初中畢業(yè)生信息技術(shù)中考知識點(diǎn)詳解
- 2024-2025學(xué)年山東省德州市高中五校高二上學(xué)期期中考試地理試題(解析版)
- 《萬方數(shù)據(jù)資源介紹》課件
- 麻風(fēng)病病情分析
- 《急診科建設(shè)與設(shè)備配置標(biāo)準(zhǔn)》
- 第一章-地震工程學(xué)概論
- JJF(陜) 063-2021 漆膜沖擊器校準(zhǔn)規(guī)范
- TSGD7002-2023-壓力管道元件型式試驗(yàn)規(guī)則
- 2024年度家庭醫(yī)生簽約服務(wù)培訓(xùn)課件
- 建筑工地節(jié)前停工安全檢查表
評論
0/150
提交評論