




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆北京市西城區(qū)第一五六中學(xué)數(shù)學(xué)高一上期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在下列四個正方體中,、為正方體兩個頂點,、、為所在棱的中點,則在這四個正方體中,直線與平面不平行的是()A. B.C. D.2.下列命題中不正確的是()A.一組數(shù)據(jù)1,2,3,3,4,5的眾數(shù)大于中位數(shù)B.數(shù)據(jù)6,5,4,3,3,3,2,2,2,1的分位數(shù)為5C.若甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙D.為調(diào)查學(xué)生每天平均閱讀時間,某中學(xué)從在校學(xué)生中,利用分層抽樣的方法抽取初中生20人,高中生10人.經(jīng)調(diào)查,這20名初中生每天平均閱讀時間為60分鐘,這10名高中生每天平均閱讀時間為90分鐘,那么被抽中的30名學(xué)生每天平均閱讀時間為70分鐘3.1弧度的圓心角所對的弧長為6,則這個圓心角所夾的扇形的面積是()A.3 B.6C.18 D.364.已知,則()A. B.C. D.5.設(shè)函數(shù)f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()對一切x∈R恒成立,則下列結(jié)論中正確的是()A.B.點是函數(shù)的一個對稱中心C.在上是增函數(shù)D.存在直線經(jīng)過點且與函數(shù)的圖象有無數(shù)多個交點6.已知函數(shù):①y=2x;②y=log2x;③y=x-1;④y=;則下列函數(shù)圖像(第一象限部分)從左到右依次與函數(shù)序號的對應(yīng)順序是()A.②①③④ B.②③①④C.④①③② D.④③①②7.函數(shù)的部分圖象如圖所示,則的值分別是()A. B.C. D.8.函數(shù)對于定義域內(nèi)任意,下述四個結(jié)論中,①②③④其中正確的個數(shù)是()A.4 B.3C.2 D.19.若一元二次不等式的解集為,則的值為()A. B.0C. D.210.若sin(),α是第三象限角,則sin()=()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.袋子中有大小和質(zhì)地完全相同的4個球,其中2個紅球,2個白球,不放回地從中依次隨機摸出2球,則2球顏色相同的概率等于________12.已知函數(shù),關(guān)于方程有四個不同的實數(shù)解,則的取值范圍為__________13.已知的定義域為,那么a的取值范圍為_________14.已知直三棱柱的6個頂點都在球O的球面上,若,則球O的半徑為________15.扇形半徑為,圓心角為60°,則扇形的弧長是____________16.2021年10月16日0時23分,搭載神舟十三號載人飛船的長征二號F遙十三運載火箭,在酒泉衛(wèi)星發(fā)射中心點火升空.約582秒后,載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,發(fā)射取得圓滿成功.此次航天飛行任務(wù)中,火箭起到了非常重要的作用.火箭質(zhì)量是箭體質(zhì)量與燃料質(zhì)量的和,在不考慮空氣阻力的條件下,燃料質(zhì)量不同的火箭的最大速度之差與火箭質(zhì)量的自然對數(shù)之差成正比.已知某火箭的箭體質(zhì)量為mkg,當(dāng)燃料質(zhì)量為mkg時,該火箭的最大速度為2ln2km/s,當(dāng)燃料質(zhì)量為時,該火箭最大速度為2km/s.若該火箭最大速度達(dá)到第一宇宙速度7.9km/s,則燃料質(zhì)量是箭體質(zhì)量的_______________倍.(參考數(shù)據(jù):)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,CA=CB,點D,E分別為AB,AC的中點.求證:(1)DE∥平面PBC;(2)CD⊥平面PAB18.設(shè)集合,.(1)若,求;(2)若,求實數(shù)的取值集合.19.某興趣小組在研究性學(xué)習(xí)活動中,通過對某商店一種商品銷售情況的調(diào)查發(fā)現(xiàn):該商品在過去的一個月內(nèi)(以天計)的日銷售價格(元)與時間(天)的函數(shù)關(guān)系近似滿足(為常數(shù)).該商品的日銷售量(個)與時間(天)部分?jǐn)?shù)據(jù)如下表所示:(天)(個)已知第天該商品日銷售收入為元.(1)求出該函數(shù)和的解析式;(2)求該商品的日銷售收入(元)的最小值.20.某農(nóng)戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設(shè),分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農(nóng)戶應(yīng)該選擇哪一種方案,并說明理由.21.已知函數(shù),實數(shù)且(1)設(shè),判斷函數(shù)在上的單調(diào)性,并說明理由;(2)設(shè)且時,的定義域和值域都是,求的最大值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用線面平行判定定理可判斷A、B、C選項的正誤;利用線面平行的性質(zhì)定理可判斷D選項的正誤.【詳解】對于A選項,如下圖所示,連接,在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于B選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于C選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、中點,則,,平面,平面,平面;對于D選項,如下圖所示,連接交于點,連接,連接交于點,若平面,平面,平面平面,則,則,由于四邊形為正方形,對角線交于點,則為的中點,、分別為、的中點,則,且,則,,則,又,則,所以,與平面不平行;故選:D.【點睛】判斷或證明線面平行的常用方法:(1)利用線面平行的定義,一般用反證法;(2)利用線面平行的判定定理(,,),其關(guān)鍵是在平面內(nèi)找(或作)一條直線與已知直線平行,證明時注意用符號語言的敘述;(3)利用面面平行的性質(zhì)定理(,).2、A【解析】由中位數(shù)以及眾數(shù)判斷A;由百分位數(shù)的定義計算判斷B;計算乙組數(shù)據(jù)的方差判斷C;計算被抽中的30名學(xué)生每天平均閱讀時間從而判斷D.【詳解】對于A,中位數(shù)為和眾數(shù)相等,故A錯誤;對于B,將該組數(shù)據(jù)從小到大排列為,,則該組數(shù)據(jù)的分位數(shù)為5,故B正確;對于C,乙組數(shù)據(jù),方差為,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙,故C正確;對于D,被抽中的30名學(xué)生每天平均閱讀時間為,故D正確;故選:A3、C【解析】由弧長的定義,可求得扇形的半徑,再由扇形的面積公式,即可求解.【詳解】由1弧度的圓心角所對的弧長為6,利用弧長公式,可得,即,所以扇形的面積為.故選C.【點睛】本題主要考查了扇形的弧長公式和扇形的面積公式的應(yīng)用,著重考查了計算能力,屬于基礎(chǔ)題.4、D【解析】先求出,再分子分母同除以余弦的平方,得到關(guān)于正切的關(guān)系式,代入求值.【詳解】由得,,所以故選:D5、D【解析】根據(jù)f(x)≥f()對一切x∈R恒成立,那么x=取得最小值.結(jié)合周期判斷各選項即可【詳解】函數(shù)f(x)=asinx+bcosx=周期T=2π由題意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正確;x=取得最小值,那么+=就是相鄰的對稱中心,∴點(,0)不是函數(shù)f(x)的一個對稱中心;因為x=取得最小值,根據(jù)正弦函數(shù)的性質(zhì)可知,f(x)在是減函數(shù)故選D【點睛】本題考查三角函數(shù)的性質(zhì)應(yīng)用,排除法求解,考查轉(zhuǎn)化思想以及計算能力6、D【解析】圖一與冪函數(shù)圖像相對應(yīng),所以應(yīng)④;圖二與反比例函數(shù)相對應(yīng),所以應(yīng)為③;圖三與指數(shù)函數(shù)相對應(yīng),所以應(yīng)為①;圖四與對數(shù)函數(shù)圖像相對應(yīng),所以應(yīng)為②所以對應(yīng)順序為④③①②,故選D7、A【解析】根據(jù)的圖象求得,求得,再根據(jù),求得,求得的值,即可求解.【詳解】根據(jù)函數(shù)的圖象,可得,可得,所以,又由,可得,即,解得,因為,所以.故選:A.8、B【解析】利用指數(shù)的運算性質(zhì)及指數(shù)函數(shù)的單調(diào)性依次判讀4個序號即可.【詳解】,①正確;,,②錯誤;,由,且得,故,③正確;由為減函數(shù),可得,④正確.故選:B.9、C【解析】由不等式與方程的關(guān)系轉(zhuǎn)化為,從而解得【詳解】解:∵不等式kx2﹣2x+k<0的解集為{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故選:C10、C【解析】由α是第三象限角,且sin(),可得為第二象限角,即可得,然后結(jié)合,利用兩角和的正弦公式展開運算即可.【詳解】解:因為α是第三象限角,則,又sin(),所以,即為第二象限角,則,則,故選:C.【點睛】本題考查了角的拼湊,重點考查了兩角和的正弦公式,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】把4個球編號,用列舉法寫出所有基本事件,并得出2球顏色相同的事件,計數(shù)后可計算概率【詳解】2個紅球編號為,2個白球編號為,則依次取2球的基本事件有:共6個,其中2球顏色相同的事件有共2個,所求概率為故答案為:12、【解析】作出的圖象如下:結(jié)合圖像可知,,故令得:或,令得:,且等號取不到,故,故填.點睛:一般討論函數(shù)零點個數(shù)問題,都要轉(zhuǎn)化為方程根的個數(shù)問題或兩個函數(shù)圖像交點的個數(shù)問題,本題由于涉及函數(shù)為初等函數(shù),可以考慮函數(shù)圖像來解決,轉(zhuǎn)化為過定點的直線與拋物線變形圖形的交點問題,對函數(shù)圖像處理能力要求較高.13、【解析】根據(jù)題意可知,的解集為,由即可求出【詳解】依題可知,的解集為,所以,解得故答案為:14、【解析】根據(jù)直角三角形的外接圓的直徑是直角三角形的斜邊,結(jié)合球的對稱性、勾股定理、直三棱柱的幾何性質(zhì)進(jìn)行求解即可.【詳解】因為,所以三角形是以為斜邊的直角三角形,因此三角形的外接圓的直徑為,圓心為.因為,所以,在直三棱柱中,側(cè)面是矩形且它的中心即為球心O,球的直徑是的長,則,所以球的半徑為故答案為:【點睛】本題考查了直三棱柱外接球問題,考查了直觀想象能力和數(shù)學(xué)運算能力.15、【解析】根據(jù)弧長公式直接計算即可.【詳解】解:扇形半徑為,圓心角為60°,所以,圓心角對應(yīng)弧度為.所以扇形的弧長為.故答案為:16、51【解析】設(shè)燃料質(zhì)量不同的火箭的最大速度之差與火箭質(zhì)量的自然對數(shù)之差成正比的比例系數(shù)為k,根據(jù)條件列方程求出k值,再設(shè)當(dāng)該火箭最大速度達(dá)到第--宇宙速度7.9km/s時,燃料質(zhì)量是箭體質(zhì)量的a倍,根據(jù)題中數(shù)據(jù)再列方程可得a值.【詳解】設(shè)燃料質(zhì)量不同的火箭的最大速度之差與火箭質(zhì)量的自然對數(shù)之差成正比的比例系數(shù)為k,則,解得,設(shè)當(dāng)該火箭最大速度達(dá)到第一宇宙速度7.9km/s時,燃料質(zhì)量是箭體質(zhì)量的a倍,則,得,則燃料質(zhì)量是箭體質(zhì)量的51倍故答案為:51.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)由點D、E分別為AB、AC中點得知DE∥BC,由此證得DE∥平面PBC;(2)要證CD⊥平面PAB,只需證明垂直平面內(nèi)的兩條相交直線與即可.【詳解】(1)因為點D、E分別為AB、AC中點,所以DE∥BC又因為DE?平面PBC,BC?平面PBC,所以DE∥平面PBC(2)因為CA=CB,點D為AB中點,所以CD⊥AB因為PA⊥平面ABC,CD?平面ABC,所以PA⊥CD又因為PA∩AB=A,所以CD⊥平面PAB【點睛】本題考查線面平行的證明,線面垂直的證明,屬于基礎(chǔ)題.垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(1);(2).【解析】易得.(1)由;(2),然后利用分類討論思想對、和分三種情況進(jìn)行討論.試題解析:集合(1)若,則,則(2),∴,當(dāng),即時,成立;當(dāng),即時,(i)當(dāng)時,,要使得,,只要解得,所以的值不存在;(ii)當(dāng)時,,要使得,只要解得綜上,的取值集合是考點:集合的基本運算.19、(1),(2)最小值為元【解析】(1)利用可求得的值,利用表格中的數(shù)據(jù)可得出關(guān)于、的方程組,可解得、的值,由此可得出函數(shù)和的解析式;(2)求出函數(shù)的解析式,利用基本不等式、函數(shù)單調(diào)性求得在且、且的最小值,比較大小后可得出結(jié)論.【小問1詳解】解:依題意知第天該商品的日銷售收入為,解得,所以,.由表格可知,解得.所以,.【小問2詳解】解:由(1)知,當(dāng)且時,,當(dāng)且時,.,當(dāng)時,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,即.當(dāng)時,因為函數(shù)、均為減函數(shù),則函數(shù)為減函數(shù),所以當(dāng)時,取得最小值,且.綜上所述,當(dāng)時,取得最小值,且.故該商品的日銷售收入的最小值為元.20、(1),;,.(2)農(nóng)戶應(yīng)該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質(zhì)結(jié)合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當(dāng)時,,所以矩形的面積,;對于方案丙,當(dāng)時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設(shè),則,所以三角形的面積為,當(dāng)且僅當(dāng)時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學(xué)生心理健康教育活動
- 未來展望中級經(jīng)濟師試題及答案
- 行政管理經(jīng)濟法新教材試題及答案
- 經(jīng)濟法概論考試大綱試題及答案
- 響應(yīng)式Web開發(fā)項目教程(HTML5 CSS3 Bootstrap)(第3版) 課件 第2章 CSS頁面樣式美化
- 語文變色龍課件設(shè)計與實施
- 通訊設(shè)備銷售及技術(shù)支持合作協(xié)議
- 新能源技術(shù)研發(fā)與轉(zhuǎn)讓合同書
- 服裝設(shè)計及生產(chǎn)流程優(yōu)化指南
- 水利水電工程工作的實際案例解析試題及答案
- 《Hadoop電信大數(shù)據(jù)的用戶分群算法研究與實現(xiàn)》
- 《烈士陵園游》課件
- 《中國現(xiàn)代影視作品中反派人物形象塑造歷程與特點淺析》15000字(論文)
- GB/T 44758-2024工業(yè)用硝酸銀
- 現(xiàn)在醫(yī)療現(xiàn)狀
- 經(jīng)濟類高等數(shù)學(xué)(下)期末考試模擬試卷1及參考答案
- 養(yǎng)老院老人興趣小組活動制度
- 《能力陷阱》課件
- 《零星工程項目監(jiān)理方案》
- 年度污水處理托管服務(wù) 投標(biāo)方案(技術(shù)標(biāo) )
- 廣東省廣州市八區(qū)聯(lián)考2025屆高一物理第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
評論
0/150
提交評論