版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省撫州市南城一中2025屆數(shù)學(xué)高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的左、右焦點分別為、,過點且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點,若,則雙曲線C的離心率為()A. B.C. D.2.已知,則方程與在同一坐標(biāo)系內(nèi)對應(yīng)的圖形編號可能是()A.①④ B.②③C.①② D.③④3.曲線在點處的切線方程為()A. B.C. D.4.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內(nèi)的交點為,若,則直線的斜率為()A. B.C. D.5.過點與直線平行的直線的方程是()A. B.C. D.6.下列命題中,真命題的個數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個7.?dāng)?shù)列,,,,,中,有序?qū)崝?shù)對是()A. B.C. D.8.已知函數(shù),則()A.1 B.2C.3 D.59.是等差數(shù)列,且,,則的值()A. B.C. D.10.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.811.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=112.已知點是橢圓上的任意點,是橢圓的左焦點,是的中點,則的周長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為的球的體積為_________14.若和或都是假命題,則的范圍是__________15.已知方程表示焦點在x軸上的雙曲線,則m的取值范圍為________16.曲線在處的切線方程是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)p:;q:關(guān)于x的方程無實根.(1)若q為真命題,求實數(shù)k的取值范圍;(2)若是假命題,且是真命題,求實數(shù)k的取值范圍.18.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標(biāo)原點);(2)設(shè)F為拋物線C的焦點,直線為拋物線C的準(zhǔn)線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值19.(12分)已知二次函數(shù),令,解得.(1)求二次函數(shù)的解析式;(2)當(dāng)關(guān)于的不等式恒成立時,求實數(shù)的范圍.20.(12分)某話劇表演小組由名學(xué)生組成,若從這名學(xué)生中任意選取人,其中恰有名男生的概率是.(1)求該小組中男、女生各有多少人?(2)若這名學(xué)生站成一排照相留念,求所有排法中男生不相鄰的概率.21.(12分)設(shè)為數(shù)列的前n項和,且滿足(1)求證:數(shù)列為等差數(shù)列;(2)若,且成等比數(shù)列,求數(shù)列的前項和22.(10分)給出以下三個條件:①;②,,成等比數(shù)列;③.請從這三個條件中任選一個,補充到下面問題中,并完成作答.若選擇多個條件分別作答,以第一個作答計分已知公差不為0的等差數(shù)列的前n項和為,,______(1)求數(shù)列的通項公式;(2)若,令,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,且,可得,再結(jié)合,可得,進而在△中,由余弦定理可得到齊次方程,求出即可.【詳解】由題意,可得,因為,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,則,即,解得,因為,所以.故選:C.【點睛】方法點睛:本題考查求雙曲線的離心率,屬于中檔題.雙曲線離心率的求法:(1)由條件直接求出(或或),或者尋找(或或)所滿足的關(guān)系,利用求解;(2)根據(jù)條件列出的齊次方程,利用轉(zhuǎn)化為關(guān)于的方程,解方程即可,注意根據(jù)對所得解進行取舍.2、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對①②③④分析m、n的正負,即可得到答案.【詳解】對于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號,矛盾.故①錯誤;對于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號,符合要求.故②成立;對于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點在x軸上,符合要求.故③成立;對于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點在x軸上,矛盾.故④錯誤;故選:B3、A【解析】利用切點和斜率求得切線方程.【詳解】由,有曲線在點處的切線方程為,整理為故選:A4、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.5、A【解析】根據(jù)題意利用點斜式寫出直線方程即可.【詳解】解:過點的直線與直線平行,,即.故選:A.6、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設(shè)點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.7、A【解析】根據(jù)數(shù)列的概念,找到其中的規(guī)律即可求解.【詳解】由數(shù)列,,,,,可知,,,,,則,解得,故有序?qū)崝?shù)對是,故選:8、C【解析】利用導(dǎo)數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C9、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算【詳解】因為是等差數(shù)列,所以,,也成等差數(shù)列,所以故選:B10、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D11、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點:雙曲線的標(biāo)準(zhǔn)方程及簡單的幾何性質(zhì)12、A【解析】設(shè)橢圓另一個焦點為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個焦點為,連接,因為、分別為、的中點,則,則的周長為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)球的體積公式求解【詳解】根據(jù)球的體積公式【點睛】球的體積公式14、【解析】先由和或都是假命題,求出x的范圍,取交集即可.【詳解】若為假命題,則有或若或是假命題,則所以的范圍是即的范圍是胡答案:15、【解析】根據(jù)焦點在軸的雙曲線的標(biāo)準(zhǔn)方程的特征可得答案.【詳解】因為雙曲線的焦點在軸上,則,解得.所以的取值范圍為故答案為:16、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)命題的真假,結(jié)合一元二次方程無實根,列出的不等式,即可求得結(jié)果;(2)求得命題為真對應(yīng)的的范圍,結(jié)合命題一個為真命題一個為假命題,即可列出的不等式組,求解即可.【小問1詳解】若q為真命題,則,解得,即實數(shù)k的取值范圍為.【小問2詳解】若p為真,,解得,由是假命題,且是真命題,得:p、q兩命題一真一假,當(dāng)p真q假時,或,得,當(dāng)p假q真時,,此時無解.綜上的取值范圍為.18、(1)(2)證明見解析,定值為【解析】(1)設(shè)出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標(biāo),通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設(shè)直線的方程為,設(shè),,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點坐標(biāo)為,準(zhǔn)線,通徑所在直線,在拋物線上,且,所以過點的拋物線的切線的斜率存在且不為零,設(shè)過點的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.19、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的兩個根,根據(jù)根與系數(shù)之間的關(guān)系,即可求,;(2)根據(jù)題意,得出不等式恒成立,則,解不等式即可求出實數(shù)的范圍.詳解】解:(1)由題可知,,解得:,則-3,2是方程的兩個根,且,所以由根與系數(shù)之間的關(guān)系得,解得,所以二次函數(shù)的解析式為:;(2)由于不等式恒成立,即恒成立,則,解得:,所以實數(shù)的范圍為.【點睛】本題考查由一元二次不等式的解集求函數(shù)解析式,以及不等式恒成立問題求參數(shù)范圍,考查根與系數(shù)的關(guān)系和一元二次函數(shù)的圖象和性質(zhì),考查化簡運算能力20、(1)男生人數(shù)為,女生人數(shù)為;(2).【解析】(1)設(shè)男生的人數(shù)為,則女生人數(shù)為,且,根據(jù)組合計數(shù)原理結(jié)合古典概型的概率公式可求得的值,即可得解;(2)利用插空法結(jié)合古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:設(shè)男生的人數(shù)為,則女生人數(shù)為,且,由已知可得,即,因為且,解得,所以,該小組中男生人數(shù)為,女生人數(shù)為.【小問2詳解】解:若男生不相鄰,則先將女生全排,然后在女生所形成的個空中選個空插入男生,因此,所有排法中男生不相鄰的概率為.21、(1)證明見解析;(2)答案見解析.【解析】(1)利用給定的遞推公式,結(jié)合“當(dāng)時,”變形,再利用等差中項的定義推理作答.(2)利用(1)的結(jié)論,利用等比中項的定義列式計算,再利用等差數(shù)列前n項和公式計算作答.【小問1詳解】依題意,,當(dāng)時,有,兩式相減得:,同理可得,于是得,即,而當(dāng)時,,所以數(shù)列為等差數(shù)列.【小問2詳解】由(1)知數(shù)列為等差數(shù)列,設(shè)其首項為,公差為d,依題意,,解得或,當(dāng)時,,當(dāng)時,.22、(1)(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海南省安全員知識題庫
- 2025年貴州省安全員C證考試(專職安全員)題庫附答案
- 中醫(yī)內(nèi)科學(xué)-癭病
- 【大學(xué)課件】建筑設(shè)備工程
- 聲音的產(chǎn)生與傳播+flash課件
- 語文課件-畫蛇添足
- 三年級語文《炮手》課件
- 建設(shè)工程安全生產(chǎn)管理課件
- 萬科穿插施工與施工計劃
- 《急腹癥幻燈》課件
- 第五單元《圓》(大單元教學(xué)設(shè)計)-2024-2025學(xué)年六年級上冊數(shù)學(xué)人教版
- 商業(yè)道德和反腐敗制度
- 水利工程土方回填施工方案
- 宜昌市西陵區(qū)2024年數(shù)學(xué)六年級第一學(xué)期期末檢測試題含解析
- 眼藥水項目創(chuàng)業(yè)計劃書
- 2024年全國《國防和兵役》理論知識競賽試題庫與答案
- 經(jīng)營性房屋租賃項目投標(biāo)方案(技術(shù)標(biāo))
- 入戶調(diào)查合同范本
- 七年級道法上冊第一學(xué)期期末綜合測試卷(人教版 2024年秋)
- 標(biāo)桿地產(chǎn)五星級酒店精裝修標(biāo)準(zhǔn)
- 廣東省廣州市名校聯(lián)盟重點名校2024屆中考化學(xué)全真模擬試卷含解析
評論
0/150
提交評論